TY - JOUR
T1 - 1,4-Dihydropyridine binding sites in moss plasma membranes
T2 - Properties of receptors for a calcium channel antagonist
AU - Schumaker, Karen S.
AU - Gizinski, Michael J.
PY - 1995/10/6
Y1 - 1995/10/6
N2 - University of Arizona,. An increase in cytoplasmic calcium is an early event in hormone (cytokinin)-induced vegetative bud formation in the moss Physcomitrella patens. Whole cell and calcium transport studies have implicated 1,4-dihydropyridine-sensitive calcium channels in this increase in cellular calcium. To understand the molecular nature of the dihydropyridine-sensitive calcium channel, we have established conditions for the binding of the arylazide 1,4-dihydropyridine, [3H]azidopine, to its receptor in moss plasma membranes. [3H]Azidopine bound specifically in a saturable and reversible manner. The KD for [3H]azidopine binding was 5.2 nM and the Bmax was 35.6 pmol/mg of protein. Association and dissociation of the receptor and [3H]azidopine were temperature-dependent, and association varied as a function of pH. Binding was inhibited by dihydropyridine, phenylalkylamine, and benzothiazepine calcium channel blockers, bepridil, lanthanum, and N-ethylmaleimide. [3H]Azidopine binding was stimulated by cations including calcium, strontium, manganese, and barium. [3H]Azidopine binding was also stimulated by cytokinin with a Km value for kinetin of 0.13 nM. These studies utilize a simple plant system to provide a biochemical framework for understanding calcium regulation during development and have implications for understanding mechanisms of signal transduction in plants.
AB - University of Arizona,. An increase in cytoplasmic calcium is an early event in hormone (cytokinin)-induced vegetative bud formation in the moss Physcomitrella patens. Whole cell and calcium transport studies have implicated 1,4-dihydropyridine-sensitive calcium channels in this increase in cellular calcium. To understand the molecular nature of the dihydropyridine-sensitive calcium channel, we have established conditions for the binding of the arylazide 1,4-dihydropyridine, [3H]azidopine, to its receptor in moss plasma membranes. [3H]Azidopine bound specifically in a saturable and reversible manner. The KD for [3H]azidopine binding was 5.2 nM and the Bmax was 35.6 pmol/mg of protein. Association and dissociation of the receptor and [3H]azidopine were temperature-dependent, and association varied as a function of pH. Binding was inhibited by dihydropyridine, phenylalkylamine, and benzothiazepine calcium channel blockers, bepridil, lanthanum, and N-ethylmaleimide. [3H]Azidopine binding was stimulated by cations including calcium, strontium, manganese, and barium. [3H]Azidopine binding was also stimulated by cytokinin with a Km value for kinetin of 0.13 nM. These studies utilize a simple plant system to provide a biochemical framework for understanding calcium regulation during development and have implications for understanding mechanisms of signal transduction in plants.
UR - http://www.scopus.com/inward/record.url?scp=0028855992&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028855992&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.40.23461
DO - 10.1074/jbc.270.40.23461
M3 - Article
C2 - 7559508
SN - 0021-9258
VL - 270
SP - 23461
EP - 23467
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 40
ER -