Abstract
Cellular materials such as honeycombs and lattices are an important area of research in Additive Manufacturing due to their ability to improve functionality and performance. While there are several design choices when selecting a unit cell, it is not always apparent what the optimum cellular design for a particular application is. This becomes particularly challenging when seeking an optimal design for more than one function, or when the design needs to transition spatially between different functions. Nature abounds with examples of cellular materials that are able to achieve multifunctionality, but designers lack the ability to translate the underlying principles in these examples to their design tools. In this work, we propose a framework to bridge the gap between nature and designer. We present a classification of natural cellular materials based on their structure and function, and relate them in a manner amenable for use in guiding design for Additive Manufacturing.
Original language | English (US) |
---|---|
Pages | 2188-2200 |
Number of pages | 13 |
State | Published - 2020 |
Event | 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 - Austin, United States Duration: Aug 7 2017 → Aug 9 2017 |
Conference
Conference | 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 8/7/17 → 8/9/17 |
ASJC Scopus subject areas
- Surfaces, Coatings and Films
- Surfaces and Interfaces