A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis

Yusen Zhou, Tian Zhang, Xiaocui Wang, Wenqiang Wu, Jingjing Xing, Zuliang Li, Xin Qiao, Chunrui Zhang, Xiaohang Wang, Guangshun Wang, Wenhui Li, Shenglong Bai, Zhi Li, Yuanzhen Suo, Jiajia Wang, Yanli Niu, Junli Zhang, Chen Lan, Zhubing Hu, Baozhu LiXuebin Zhang, Wei Wang, David W. Galbraith, Yuhang Chen, Siyi Guo, Chun Peng Song

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The unique dumbbell-shape of grass guard cells (GCs) is controlled by their cell walls which enable their rapid responses to the environment. The molecular mechanisms regulating the synthesis and assembly of GC walls are as yet unknown. Here we have identified BZU3, a maize gene encoding UDP-glucose 4-epimerase that regulates the supply of UDP-glucose during GC wall synthesis. The BZU3 mutation leads to significant decreases in cellular UDP-glucose levels. Immunofluorescence intensities reporting levels of cellulose and mixed-linkage glucans are reduced in the GCs, resulting in impaired local wall thickening. BZU3 also catalyzes the epimerization of UDP-N-acetylgalactosamine to UDP-N-acetylglucosamine, and the BZU3 mutation affects N-glycosylation of proteins that may be involved in cell wall synthesis and signaling. Our results suggest that the spatiotemporal modulation of BZU3 plays a dual role in controlling cell wall synthesis and glycosylation via controlling UDP-glucose/N-acetylglucosamine homeostasis during stomatal morphogenesis. These findings provide insights into the mechanisms controlling formation of the unique morphology of grass stomata.

Original languageEnglish (US)
Article number4384
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis'. Together they form a unique fingerprint.

Cite this