A Novel Acetone Sensor for Body Fluids

Oscar Osorio Perez, Ngan Anh Nguyen, Asher Hendricks, Shaun Victor, Sabrina Jimena Mora, Nanxi Yu, Xiaojun Xian, Shaopeng Wang, Doina Kulick, Erica Forzani

Research output: Contribution to journalArticlepeer-review


Ketones are well-known biomarkers of fat oxidation produced in the liver as a result of lipolysis. These biomarkers include acetoacetic acid and β-hydroxybutyric acid in the blood/urine and acetone in our breath and skin. Monitoring ketone production in the body is essential for people who use caloric intake deficit to reduce body weight or use ketogenic diets for wellness or therapeutic treatments. Current methods to monitor ketones include urine dipsticks, capillary blood monitors, and breath analyzers. However, these existing methods have certain disadvantages that preclude them from being used more widely. In this work, we introduce a novel acetone sensor device that can detect acetone levels in breath and overcome the drawbacks of existing sensing approaches. The critical element of the device is a robust sensor with the capability to measure acetone using a complementary metal oxide semiconductor (CMOS) chip and convenient data analysis from a red, green, and blue deconvolution imaging approach. The acetone sensor device demonstrated sensitivity of detection in the micromolar-concentration range, selectivity for detection of acetone in breath, and a lifetime stability of at least one month. The sensor device utility was probed with real tests on breath samples using an established blood ketone reference method.

Original languageEnglish (US)
Article number4
Issue number1
StatePublished - Jan 2024


  • breath sensor
  • digital medicine
  • fat burning
  • fat oxidation
  • ketones
  • metabolic rate
  • point of care
  • wearable sensor

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biotechnology
  • Biomedical Engineering
  • Instrumentation
  • Engineering (miscellaneous)
  • Clinical Biochemistry


Dive into the research topics of 'A Novel Acetone Sensor for Body Fluids'. Together they form a unique fingerprint.

Cite this