TY - JOUR
T1 - A Self-Regulating DNA Rotaxane Linear Actuator Driven by Chemical Energy
AU - Yu, Ze
AU - Centola, Mathias
AU - Valero, Julián
AU - Matthies, Michael
AU - Šulc, Petr
AU - Famulok, Michael
N1 - Publisher Copyright: © 2021 The Authors. Published by American Chemical Society.
PY - 2021/8/25
Y1 - 2021/8/25
N2 - Nature-inspired molecular machines can exert mechanical forces by controlling and varying the distance between two molecular subunits in response to different inputs. Here, we present an automated molecular linear actuator composed of T7 RNA polymerase (T7RNAP) and a DNA [2]rotaxane. A T7 promoter region and terminator sequences are introduced into the rotaxane axle to achieve automated and iterative binding and detachment of T7RNAP in a self-controlled fashion. Transcription by T7RNAP is exploited to control the release of the macrocycle from a single-stranded (ss) region in the T7 promoter to switch back and forth from a static state (hybridized macrocycle) to a dynamic state (movable macrocycle). During transcription, the T7RNAP keeps restricting the movement range on the axle available for the interlocked macrocycle and prevents its return to the promotor region. Since this range is continuously depleted as T7RNAP moves along, a directional and active movement of the macrocycle occurs. When it reaches the transcription terminator, the polymerase detaches, and the system can reset as the macrocycle moves back to hybridize again to the ss-promoter docking site. The hybridization is required for the initiation of a new transcription cycle. The rotaxane actuator runs autonomously and repeats these self-controlled cycles of transcription and movement as long as NTP-fuel is available.
AB - Nature-inspired molecular machines can exert mechanical forces by controlling and varying the distance between two molecular subunits in response to different inputs. Here, we present an automated molecular linear actuator composed of T7 RNA polymerase (T7RNAP) and a DNA [2]rotaxane. A T7 promoter region and terminator sequences are introduced into the rotaxane axle to achieve automated and iterative binding and detachment of T7RNAP in a self-controlled fashion. Transcription by T7RNAP is exploited to control the release of the macrocycle from a single-stranded (ss) region in the T7 promoter to switch back and forth from a static state (hybridized macrocycle) to a dynamic state (movable macrocycle). During transcription, the T7RNAP keeps restricting the movement range on the axle available for the interlocked macrocycle and prevents its return to the promotor region. Since this range is continuously depleted as T7RNAP moves along, a directional and active movement of the macrocycle occurs. When it reaches the transcription terminator, the polymerase detaches, and the system can reset as the macrocycle moves back to hybridize again to the ss-promoter docking site. The hybridization is required for the initiation of a new transcription cycle. The rotaxane actuator runs autonomously and repeats these self-controlled cycles of transcription and movement as long as NTP-fuel is available.
UR - http://www.scopus.com/inward/record.url?scp=85114141832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114141832&partnerID=8YFLogxK
U2 - 10.1021/jacs.1c06226
DO - 10.1021/jacs.1c06226
M3 - Article
C2 - 34398597
SN - 0002-7863
VL - 143
SP - 13292
EP - 13298
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 33
ER -