Abstract
We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of textons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.
Original language | English (US) |
---|---|
Article number | 6618894 |
Pages (from-to) | 337-344 |
Number of pages | 8 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
State | Published - 2013 |
Event | 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013 - Portland, OR, United States Duration: Jun 23 2013 → Jun 28 2013 |
Keywords
- GIS
- shortest path
- statistical model
- superpixels
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition