TY - GEN
T1 - Accelerated Multi-Agent Optimization Method over Stochastic Networks
AU - Ananduta, Wicak
AU - Ocampo-Martinez, Carlos
AU - Nedic, Angelia
N1 - Publisher Copyright: © 2020 IEEE.
PY - 2020/12/14
Y1 - 2020/12/14
N2 - We propose a distributed method to solve a multi-agent optimization problem with strongly convex cost function and equality coupling constraints. The method is based on Nesterov's accelerated gradient approach and works over stochastically time-varying communication networks. We consider the standard assumptions of Nesterov's method and show that the sequence of the expected dual values converge toward the optimal value with the rate of \mathcal{O}(1/{k^2}). Furthermore, we provide a simulation study of solving an optimal power flow problem with a well-known benchmark case.
AB - We propose a distributed method to solve a multi-agent optimization problem with strongly convex cost function and equality coupling constraints. The method is based on Nesterov's accelerated gradient approach and works over stochastically time-varying communication networks. We consider the standard assumptions of Nesterov's method and show that the sequence of the expected dual values converge toward the optimal value with the rate of \mathcal{O}(1/{k^2}). Furthermore, we provide a simulation study of solving an optimal power flow problem with a well-known benchmark case.
KW - accelerated gradient method
KW - distributed method
KW - distributed optimal power flow problem
KW - multi-agent optimization
UR - http://www.scopus.com/inward/record.url?scp=85099880453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099880453&partnerID=8YFLogxK
U2 - 10.1109/CDC42340.2020.9304307
DO - 10.1109/CDC42340.2020.9304307
M3 - Conference contribution
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 2961
EP - 2966
BT - 2020 59th IEEE Conference on Decision and Control, CDC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 59th IEEE Conference on Decision and Control, CDC 2020
Y2 - 14 December 2020 through 18 December 2020
ER -