Abstract
Activation of glutamate metabotropic receptors (mGluRs) in nodose ganglia neurons has previously been shown to inhibit voltage-gated Ca++ currents and synaptic vesicle exocytosis. The present study describes the effects of mGluRs on depolarization-induced phosphorylation of the synaptic-vesicle-associated protein synapsin I. Depolarization of cultured nodose ganglia neurons with 60 mM KCl resulted in an increase in synapsin I phosphorylation. Application of mGluR agonists 1-aminocyclopentane-1s-3r-dicarboxylic acid (t-ACPD) and L(+)-2-Amino-4-phosphonobutyric acid (L-AP4) either in combination or independently inhibited the depolarization induced phosphorylation of synapsin I. Application of the mGluR antagonist (RS)-α-Methyl-4-carboxyphenylglycine (MCPG) blocked t-ACPD-induced inhibition of synapsin phosphorylation but not the effects of L-AP4. In addition, application of either t-ACPD or L-AP4 in the absence of KCl induced depolarization had no effect on resting synapsin I phosphorylation. RT-PCR analysis of mGluR subtypes in these nodose ganglia neurons revealed that these cells only express group III mGluR subtypes 7 and 8. These results suggest that activation of mGluRs modulates depolarization-induced synapsin I phosphorylation via activation of mGluR7 and/or mGluR8 and that this process may be involved in mGluR inhibition of synaptic vesicle exocytosis in visceral sensory neurons of thenodose ganglia.
Original language | English (US) |
---|---|
Pages (from-to) | 195-204 |
Number of pages | 10 |
Journal | Journal of Membrane Biology |
Volume | 178 |
Issue number | 3 |
DOIs | |
State | Published - Dec 1 2000 |
Keywords
- Baroreceptors
- Nodose ganglia
- Synapsin
- Synaptic proteins
- Synaptic transmission
- mGluRs
ASJC Scopus subject areas
- Biophysics
- Physiology
- Cell Biology