TY - GEN
T1 - Adaptive distance metrie learning for clustering
AU - Ye, Jieping
AU - Zhao, Zheng
AU - Liu, Huan
PY - 2007
Y1 - 2007
N2 - A good distance metric is crucial for unsupervised learning from high-dimensional data. To learn a metric without any constraint or class label information, most unsupervised metric learning algorithms appeal to projecting observed data onto a low-dimensional manifold, where geometric relationships such as local or global pairwise distances are preserved. However, the projection may not necessarily improve the separability of the data, which is the desirable outcome of clustering. In this paper, we propose a novel unsupervised adaptive Metric Learning algorithm, called AML, which performs clustering and distance metric learning simultaneously. AML projects the data onto a low-dimensional manifold, where the separability of the data is maximized. We show that the joint clustering and distance metric learning can be formulated as a trace maximization problem, which can be solved via an iterative procedure in the EM framework. Experimental results on a collection of benchmark data sets demonstrated the effectiveness of the proposed algorithm.
AB - A good distance metric is crucial for unsupervised learning from high-dimensional data. To learn a metric without any constraint or class label information, most unsupervised metric learning algorithms appeal to projecting observed data onto a low-dimensional manifold, where geometric relationships such as local or global pairwise distances are preserved. However, the projection may not necessarily improve the separability of the data, which is the desirable outcome of clustering. In this paper, we propose a novel unsupervised adaptive Metric Learning algorithm, called AML, which performs clustering and distance metric learning simultaneously. AML projects the data onto a low-dimensional manifold, where the separability of the data is maximized. We show that the joint clustering and distance metric learning can be formulated as a trace maximization problem, which can be solved via an iterative procedure in the EM framework. Experimental results on a collection of benchmark data sets demonstrated the effectiveness of the proposed algorithm.
UR - http://www.scopus.com/inward/record.url?scp=35148895915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35148895915&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2007.383103
DO - 10.1109/CVPR.2007.383103
M3 - Conference contribution
SN - 1424411807
SN - 9781424411801
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
BT - 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
T2 - 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
Y2 - 17 June 2007 through 22 June 2007
ER -