An Accelerated Asynchronous Distributed Method for Convex Constrained Optimization Problems

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider a class of multi-agent cooperative consensus optimization problems with local nonlinear convex constraints where only those agents connected by an edge can directly communicate, hence, the optimal consensus decision lies in the intersection of these private sets. We develop an asynchronous distributed accelerated primal-dual algorithm to solve the considered problem. The proposed scheme is the first asynchronous method with an optimal convergence guarantee for this class of problems, to the best of our knowledge. In particular, we provide an optimal convergence rate of O(1/K) for suboptimality, infeasibility, and consensus violation.

Original languageEnglish (US)
Title of host publication2023 57th Annual Conference on Information Sciences and Systems, CISS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665451819
DOIs
StatePublished - 2023
Event57th Annual Conference on Information Sciences and Systems, CISS 2023 - Baltimore, United States
Duration: Mar 22 2023Mar 24 2023

Publication series

Name2023 57th Annual Conference on Information Sciences and Systems, CISS 2023

Conference

Conference57th Annual Conference on Information Sciences and Systems, CISS 2023
Country/TerritoryUnited States
CityBaltimore
Period3/22/233/24/23

Keywords

  • Multi-agent distributed optimization
  • asyn-chronous algorithm
  • constrained optimization
  • convergence rate

ASJC Scopus subject areas

  • Computer Science Applications
  • Hardware and Architecture
  • Information Systems
  • Artificial Intelligence
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'An Accelerated Asynchronous Distributed Method for Convex Constrained Optimization Problems'. Together they form a unique fingerprint.

Cite this