Analysis of a tripartite entanglement distribution switch

Philippe Nain, Gayane Vardoyan, Saikat Guha, Don Towsley

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


We study a quantum switch that distributes tripartite entangled states to sets of users. The entanglement switching process requires two steps: First, each user attempts to generate bipartite entanglement between itself and the switch, and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of three users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. The state of the system is modeled as continuous-time Markov chain (CTMC), and performance metrics of interest (probability of an empty system, switch capacity, expectation, and variance of the number of qubit-pairs stored) are computed via the solution of a two-dimensional functional equation obtained by reducing it to a boundary value problem on a closed curve. This work is a follow-up of Nain et al. (Proc ACM Measure Anal Comput Syst(POMACS) 4, 2020) where a switch distributing entangled multipartite states to sets of users was studied, but only the switch capacity and the expected number of stored qubits were derived.

Original languageEnglish (US)
Pages (from-to)291-328
Number of pages38
JournalQueueing Systems
Issue number3-4
StatePublished - Aug 2022


  • Boundary value problem
  • Markov process
  • Quantum switch
  • Queueing

ASJC Scopus subject areas

  • Statistics and Probability
  • Computer Science Applications
  • Management Science and Operations Research
  • Computational Theory and Mathematics


Dive into the research topics of 'Analysis of a tripartite entanglement distribution switch'. Together they form a unique fingerprint.

Cite this