Abstract
Insect resistance to Bacillus thuringiensis (Bt) toxins has led to an urgent need to explore the insecticidal mechanisms of Bt. Previous studies indicated that Helicoverpa armigera ATP synthase subunit α (HaATPs-α) is involved in Cry1Ac resistance. In this study, a real-time quantitative polymerase chain reaction (RT-PCR) confirmed that HaATPs-α expression was significantly reduced in the Cry1Ac-resistant strain (BtR). Cry1Ac feeding induced the downregulated expression of HaATPs-α in the susceptible strain, but not in the BtR strain. Furthermore, the interaction between HaATPs-α and Cry1Ac was verified by ligand blotting and homologous competition experiments. The in vitro gain and loss of function analyses showed HaATPs-α involved in Cry1Ac toxicity by expressing endogenous HaATPs-α and HaATPs-α double-stranded RNAs in Sf9 and midgut cells, respectively. Importantly, purified HaATPs-α synergized Cry1Ac toxicity to H. armigera larvae. These findings provide the first evidence that HaATPs-α is a potential receptor of Cry1Ac, it shows downregulated participation in Cry1Ac resistance, and it exhibits higher enhancement of Cry1Ac toxicity to H. armigera larvae.
Original language | English (US) |
---|---|
Journal | Journal of agricultural and food chemistry |
DOIs | |
State | Accepted/In press - 2023 |
Keywords
- ATP synthase subunit α
- Cry1Ac
- Helicoverpa armigera
- receptor
- resistance
ASJC Scopus subject areas
- General Chemistry
- General Agricultural and Biological Sciences