Abstract

Network embedding leverages the node proximity manifested to learn a low-dimensional node vector representation for each node in the network. The learned embeddings could advance various learning tasks such as node classification, network clustering, and link prediction. Most, if not all, of the existing works, are overwhelmingly performed in the context of plain and static networks. Nonetheless, in reality, network structure often evolves over time with addition/deletion of links and nodes. Also, a vast majority of real-world networks are associated with a rich set of node attributes, and their attribute values are also naturally changing, with the emerging of new content patterns and the fading of old content patterns.These changing characteristics motivate us to seek an effective embedding representation to capture network and attribute evolving patterns, which is of fundamental importance for learning in a dynamic environment. To our best knowledge, we are the first to tackle this problem with the following two challenges: (1) the inherently correlated network and node attributes could be noisy and incomplete, it necessitates a robust consensus representation to capture their individual properties and correlations; (2) the embedding learning needs to be performed in an online fashion to adapt to the changes accordingly. In this paper, we tackle this problem by proposing a novel dynamic attributed network embedding framework - DANE. In particular, DANE first provides an offine method for a consensus embedding and then leverages matrix perturbation theory to maintain the freshness of the end embedding results in an online manner. We perform extensive experiments on both synthetic and real attributed networks to corroborate the effectiveness and efficiency of the proposed framework.

Original languageEnglish (US)
Title of host publicationCIKM 2017 - Proceedings of the 2017 ACM Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages387-396
Number of pages10
ISBN (Electronic)9781450349185
DOIs
StatePublished - Nov 6 2017
Event26th ACM International Conference on Information and Knowledge Management, CIKM 2017 - Singapore, Singapore
Duration: Nov 6 2017Nov 10 2017

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
VolumePart F131841

Other

Other26th ACM International Conference on Information and Knowledge Management, CIKM 2017
Country/TerritorySingapore
CitySingapore
Period11/6/1711/10/17

Keywords

  • Attributed networks
  • Dynamic networks
  • Network embedding

ASJC Scopus subject areas

  • General Decision Sciences
  • General Business, Management and Accounting

Fingerprint

Dive into the research topics of 'Attributed network embedding for learning in a dynamic environment'. Together they form a unique fingerprint.

Cite this