Binary planetesimal formation from gravitationally collapsing pebble clouds

David Nesvorný, Rixin Li, Jacob B. Simon, Andrew N. Youdin, Derek C. Richardson, Raphael Marschall, William M. Grundy

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Planetesimals are compact astrophysical objects roughly 1–1000 km in size, massive enough to be held together by gravity. They can grow by accreting material to become full-size planets. Planetesimals themselves are thought to form by complex physical processes from small grains in protoplanetary disks. The streaming instability (SI) model states that millimeter/centimeter-sized particles (pebbles) are aerodynamically collected into self-gravitating clouds that then directly collapse into planetesimals. Here we analyze ATHENA simulations of the SI to characterize the initial properties (e.g., rotation) of pebble clouds. Their gravitational collapse is followed with the PKDGRAV N-body code, which has been modified to realistically account for pebble collisions. We find that pebble clouds rapidly collapse into short-lived disk structures from which planetesimals form. The planetesimal properties depend on the cloud’s scaled angular momentum, l = L (MRH2 W), where L and M are the angular momentum and mass, RH is the Hill radius, and Ω is the orbital frequency. Low-l pebble clouds produce tight (or contact) binaries and single planetesimals. Compact high-l clouds give birth to binary planetesimals with attributes that closely resemble the equally sized binaries found in the Kuiper Belt. Significantly, the SI-triggered gravitational collapse can explain the angular momentum distribution of known equally sized binaries—a result pending verification from studies with improved resolution. About 10% of collapse simulations produce hierarchical systems with two or more large moons. These systems should be found in the Kuiper Belt when observations reach the threshold sensitivity.

Original languageEnglish (US)
Article numberabd858
JournalPlanetary Science Journal
Volume2
Issue number1
DOIs
StatePublished - Feb 2021

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Binary planetesimal formation from gravitationally collapsing pebble clouds'. Together they form a unique fingerprint.

Cite this