Compact deformable mirror driver electronics for risk tolerant astrophysics missions

Christian Haughwout, Kyle Van Gorkom, Stephen Kaye, Kerri Cahoy, Daewook Kim, Ewan S. Douglas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Deformable mirrors (DMs) are a critical enabling technology for many astrophysics mission concepts currently in development. Unfortunately, generating the control signals required by DMs is difficult, and historically there have been few options for controlling a DM on a spacecraft. In this work, electronics suitable for controlling a 952 actuator MEMS DM have been developed and their performance has been characterized. The driver electronics deliver 16 bits of resolution with a least significant bit increment of 2.75 milliVolts and RMS electronic noise of less than 1.2 milliVolts over the range of 0 to 170 Volts. These electronics have been built to be compatible with the needs of missions that are cost-constrained and risk-tolerant. To that end, the driver electronics use widely available parts with a total expected unit cost of approximately $30,000. Although the driver electronics do not use radiation hardened parts, testing data indicates a 2 year lifetime in a TESS-like orbit with 90 percent confidence when shielded by 6 millimeters of aluminum.

Original languageEnglish (US)
Title of host publicationAstronomical Optics
Subtitle of host publicationDesign, Manufacture, and Test of Space and Ground Systems IV
EditorsTony B. Hull, Daewook Kim, Pascal Hallibert
PublisherSPIE
ISBN (Electronic)9781510665682
DOIs
StatePublished - 2023
EventAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV 2023 - San Diego, United States
Duration: Aug 21 2023Aug 24 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12677

Conference

ConferenceAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV 2023
Country/TerritoryUnited States
CitySan Diego
Period8/21/238/24/23

Keywords

  • MEMS
  • adaptive optics
  • circuit
  • deformable mirror
  • electronics

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Compact deformable mirror driver electronics for risk tolerant astrophysics missions'. Together they form a unique fingerprint.

Cite this