Computational comparison of shock wave propoagation in explosive blast and shock tube experiments

Kaveh Laksari, Soroush Assari, Kurosh Darvish

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, detonation of TNT was simulated using an FE code and the resulting mechanical behavior of air, in which the explosion took place, was studied as a function of distance. Incident and reflected pressure and impulse profiles were compared with published data. In addition, an FE model of a shock tube setup at Temple University was developed using equations of state for Helium and air as the driver and driven fluids. The characteristics of the shock wave developed from explosive blast and shock tube were compared. It was shown that merely the two variables commonly used in the literature to compare the results from a shock tube to that of blast, i.e., peak incident pressure and positive duration, could not thoroughly include all the characteristics of the shock wave. Other parameters such as reflected pressure and impulse, which includes the velocity of the particles in addition to the pressure, are also needed to describe the shock wave.

Original languageEnglish (US)
Title of host publicationBiomedical and Biotechnology Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856215
DOIs
StatePublished - 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume3 A

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Computational comparison of shock wave propoagation in explosive blast and shock tube experiments'. Together they form a unique fingerprint.

Cite this