Coupled convection and tidal dissipation in Europa's ice shell

Lijie Han, Adam P. Showman

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

We performed 2D numerical simulations of oscillatory tidal flexing to study the interrelationship between tidal dissipation (calculated using the Maxwell model) and a heterogeneous temperature structure in Europa's ice shell. Our 2D simulations show that, if the temperature is spatially uniform, the tidal dissipation rate peaks when the Maxwell time is close to the tidal period, consistent with previous studies. The tidal dissipation rate in a convective plume encased in a different background temperature depends on both the plume and background temperature. At a fixed background temperature, the dissipation increases strongly with plume temperature at low temperatures, peaks, and then decreases with temperature near the melting point when a melting-temperature viscosity of 1013Pa. s is used; however, the peak occurs at significantly higher temperature in this heterogeneous case than in a homogeneous medium for equivalent rheology. For constant plume temperature, the dissipation rate in a plume decreases as the surrounding temperature increases; plumes that are warmer than their surroundings can exhibit enhanced heating not only relative to their surroundings but relative to the Maxwell-model prediction for a homogeneous medium at the plume temperature. These results have important implications for thermal feedbacks in Europa's ice shell.To self-consistently determine how convection interacts with tidal heating that is correctly calculated from the time-evolving heterogeneous temperature field, we coupled viscoelastic simulations of oscillatory tidal flexing (using Tekton) to long-term simulations of the convective evolution (using ConMan). Our simulations show that the tidal dissipation rate resulting from heterogeneous temperature can have a strong impact on thermal convection in Europa's ice shell. Temperatures within upwelling plumes are greatly enhanced and can reach the melting temperature under plausible tidal-flexing amplitude for Europa. A pre-existing fracture zone (at least 6. km deep) promotes the concentration of tidal dissipation (up to ∼20 times more than that in the surroundings), leading to lithospheric thinning. This supports the idea that spatially variable tidal dissipation could lead locally to high temperatures, partial melting, and play an important role in the formation of ridges, chaos, or other features.

Original languageEnglish (US)
Pages (from-to)834-844
Number of pages11
JournalIcarus
Volume207
Issue number2
DOIs
StatePublished - Jun 2010

Keywords

  • Europa
  • Ices
  • Jupiter
  • Satellites

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Coupled convection and tidal dissipation in Europa's ice shell'. Together they form a unique fingerprint.

Cite this