TY - GEN
T1 - Cross-Task Generalization via Natural Language Crowdsourcing Instructions
AU - Mishra, Swaroop
AU - Khashabi, Daniel
AU - Baral, Chitta
AU - Hajishirzi, Hannaneh
N1 - Publisher Copyright: © 2022 Association for Computational Linguistics.
PY - 2022
Y1 - 2022
N2 - Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound, indicating significant room for more progress in this direction.
AB - Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound, indicating significant room for more progress in this direction.
UR - http://www.scopus.com/inward/record.url?scp=85149104894&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85149104894&partnerID=8YFLogxK
M3 - Conference contribution
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 3470
EP - 3487
BT - ACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
A2 - Muresan, Smaranda
A2 - Nakov, Preslav
A2 - Villavicencio, Aline
PB - Association for Computational Linguistics (ACL)
T2 - 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Y2 - 22 May 2022 through 27 May 2022
ER -