TY - GEN
T1 - Debiasing Grid-based Product Search in E-commerce
AU - Guo, Ruocheng
AU - Zhao, Xiaoting
AU - Henderson, Adam
AU - Hong, Liangjie
AU - Liu, Huan
N1 - Funding Information: This material is partially based upon work supported by the National Science Foundation (NSF) Grant #1614567 and #1909555. Publisher Copyright: © 2020 ACM.
PY - 2020/8/23
Y1 - 2020/8/23
N2 - The widespread usage of e-commerce websites in daily life and the resulting wealth of implicit feedback data form the foundation for systems that train and test e-commerce search ranking algorithms. While convenient to collect, implicit feedback data inherently suffers from various types of bias since user feedback is limited to products they are exposed to by existing search ranking algorithms and impacted by how the products are displayed. In the literature, a vast majority of existing methods have been proposed towards unbiased learning to rank for list-based web search scenarios. However, such methods cannot be directly adopted by e-commerce websites mainly for two reasons. First, in e-commerce websites, search engine results pages (SERPs) are displayed in 2-dimensional grids. The existing methods have not considered the difference in user behavior between list-based web search and grid-based product search. Second, there can be multiple types of implicit feedback (e.g., clicks and purchases) on e-commerce websites. We aim to utilize all types of implicit feedback as the supervision signals. In this work, we extend unbiased learning to rank to the world of e-commerce search via considering a grid-based product search scenario. We propose a novel framework which (1) forms the theoretical foundations to allow multiple types of implicit feedback in unbiased learning to rank and (2) incorporates the row skipping and slower decay click models to capture unique user behavior patterns in grid-based product search for inverse propensity scoring. Through extensive experiments on real-world e-commerce search log datasets across browsing devices and product taxonomies, we show that the proposed framework outperforms the state of the art unbiased learning to rank algorithms. These results also reveal important insights on how user behavior patterns vary in e-commerce SERPs across browsing devices and product taxonomies.
AB - The widespread usage of e-commerce websites in daily life and the resulting wealth of implicit feedback data form the foundation for systems that train and test e-commerce search ranking algorithms. While convenient to collect, implicit feedback data inherently suffers from various types of bias since user feedback is limited to products they are exposed to by existing search ranking algorithms and impacted by how the products are displayed. In the literature, a vast majority of existing methods have been proposed towards unbiased learning to rank for list-based web search scenarios. However, such methods cannot be directly adopted by e-commerce websites mainly for two reasons. First, in e-commerce websites, search engine results pages (SERPs) are displayed in 2-dimensional grids. The existing methods have not considered the difference in user behavior between list-based web search and grid-based product search. Second, there can be multiple types of implicit feedback (e.g., clicks and purchases) on e-commerce websites. We aim to utilize all types of implicit feedback as the supervision signals. In this work, we extend unbiased learning to rank to the world of e-commerce search via considering a grid-based product search scenario. We propose a novel framework which (1) forms the theoretical foundations to allow multiple types of implicit feedback in unbiased learning to rank and (2) incorporates the row skipping and slower decay click models to capture unique user behavior patterns in grid-based product search for inverse propensity scoring. Through extensive experiments on real-world e-commerce search log datasets across browsing devices and product taxonomies, we show that the proposed framework outperforms the state of the art unbiased learning to rank algorithms. These results also reveal important insights on how user behavior patterns vary in e-commerce SERPs across browsing devices and product taxonomies.
KW - causal machine learning
KW - e-commerce search
KW - learning to rank
UR - http://www.scopus.com/inward/record.url?scp=85090401435&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090401435&partnerID=8YFLogxK
U2 - 10.1145/3394486.3403336
DO - 10.1145/3394486.3403336
M3 - Conference contribution
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 2852
EP - 2860
BT - KDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
Y2 - 23 August 2020 through 27 August 2020
ER -