Abstract

Despite recent advancements in computationally detecting fake news, we argue that a critical missing piece be the explainability of such detection-i.e., why a particular piece of news is detected as fake-and propose to exploit rich information in users' comments on social media to infer the authenticity of news. In this demo paper, we present our system for an explainable fake news detection called dEFEND, which can detect the authenticity of a piece of news while identifying user comments that can explain why the news is fake or real. Our solution develops a sentence-comment co-attention sub-network to exploit both news contents and user comments to jointly capture explainable top-k check-worthy sentences and user comments for fake news detection. The system is publicly accessible.

Original languageEnglish (US)
Title of host publicationCIKM 2019 - Proceedings of the 28th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages2961-2964
Number of pages4
ISBN (Electronic)9781450369763
DOIs
StatePublished - Nov 3 2019
Event28th ACM International Conference on Information and Knowledge Management, CIKM 2019 - Beijing, China
Duration: Nov 3 2019Nov 7 2019

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference28th ACM International Conference on Information and Knowledge Management, CIKM 2019
Country/TerritoryChina
CityBeijing
Period11/3/1911/7/19

Keywords

  • Deep learning
  • Explainable machine Learning
  • Fake news

ASJC Scopus subject areas

  • General Decision Sciences
  • General Business, Management and Accounting

Fingerprint

Dive into the research topics of 'dEFEND: A system for explainable fake news detection'. Together they form a unique fingerprint.

Cite this