Abstract

In recent years, to mitigate the problem of fake news, computational detection of fake news has been studied, producing some promising early results. While important, however, we argue that a critical missing piece of the study be the explainability of such detection, i.e., why a particular piece of news is detected as fake. In this paper, therefore, we study the explainable detection of fake news. We develop a sentence-comment co-attention sub-network to exploit both news contents and user comments to jointly capture explainable top-k check-worthy sentences and user comments for fake news detection. We conduct extensive experiments on real-world datasets and demonstrate that the proposed method not only significantly outperforms 7 state-of-the-art fake news detection methods by at least 5.33% in F1-score, but also (concurrently) identifies top-k user comments that explain why a news piece is fake, better than baselines by 28.2% in NDCG and 30.7% in Precision.

Original languageEnglish (US)
Title of host publicationKDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages395-405
Number of pages11
ISBN (Electronic)9781450362016
DOIs
StatePublished - Jul 25 2019
Event25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019 - Anchorage, United States
Duration: Aug 4 2019Aug 8 2019

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
Country/TerritoryUnited States
CityAnchorage
Period8/4/198/8/19

Keywords

  • Explainable machine learning
  • Fake news
  • Social network

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Defend: Explainable fake news detection'. Together they form a unique fingerprint.

Cite this