TY - JOUR
T1 - Design strategies and approximation methods for high-performance computing variability management
AU - Wang, Yueyao
AU - Xu, Li
AU - Hong, Yili
AU - Pan, Rong
AU - Chang, Tyler
AU - Lux, Thomas
AU - Bernard, Jon
AU - Watson, Layne
AU - Cameron, Kirk
N1 - Funding Information: The work is supported by funds from NSF under Grant CNS-1565314 and CNS-1838271 to Virginia Tech. The authors thank the editor, associate editor, and two referees, for their valuable comments that helped in improving the article significantly. The authors acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the statistical results reported within this article. Publisher Copyright: © 2022 American Society for Quality.
PY - 2023
Y1 - 2023
N2 - Performance variability management is an active research area in high-performance computing (HPC). In this article, we focus on input/output (I/O) variability, which is a complicated function that is affected by many system factors. To study the performance variability, computer scientists often use grid-based designs (GBDs) which are equivalent to full factorial designs to collect I/O variability data, and use mathematical approximation methods to build a prediction model. Mathematical approximation models, as deterministic methods, could be biased particularly if extrapolations are needed. In statistics literature, space-filling designs (SFDs) and surrogate models such as Gaussian process (GP) are popular for data collection and building predictive models. The applicability of SFDs and surrogates in the HPC variability management setting, however, needs investigation. In this case study, we investigate their applicability in the HPC setting in terms of design efficiency, prediction accuracy, and scalability. We first customize the existing SFDs so that they can be applied in the HPC setting. We conduct a comprehensive investigation of design strategies and the prediction ability of approximation methods. We use both synthetic data simulated from three test functions and the real data from the HPC setting. We then compare different methods in terms of design efficiency, prediction accuracy, and scalability. In our synthetic and real data analysis, GP with SFDs outperforms in most scenarios. With respect to the choice of approximation models, GP is recommended if the data are collected by SFDs. If data are collected using GBDs, both GP and Delaunay can be considered. With the best choice of approximation method, the performance of SFDs and GBD depends on the property of the underlying surface. For the cases in which SFDs perform better, the number of design points needed for SFDs is about half of or less than that of the GBD to achieve the same prediction accuracy. Although we observe that the GBD can also outperform SFDs for smooth underlying surface, GBD is not scalable to high dimensional experimental regions. Therefore, SFDs that can be tailored to high dimension and non-smooth surface are recommended especially when large numbers of input factors need to be considered in the model. This article has online supplementary materials.
AB - Performance variability management is an active research area in high-performance computing (HPC). In this article, we focus on input/output (I/O) variability, which is a complicated function that is affected by many system factors. To study the performance variability, computer scientists often use grid-based designs (GBDs) which are equivalent to full factorial designs to collect I/O variability data, and use mathematical approximation methods to build a prediction model. Mathematical approximation models, as deterministic methods, could be biased particularly if extrapolations are needed. In statistics literature, space-filling designs (SFDs) and surrogate models such as Gaussian process (GP) are popular for data collection and building predictive models. The applicability of SFDs and surrogates in the HPC variability management setting, however, needs investigation. In this case study, we investigate their applicability in the HPC setting in terms of design efficiency, prediction accuracy, and scalability. We first customize the existing SFDs so that they can be applied in the HPC setting. We conduct a comprehensive investigation of design strategies and the prediction ability of approximation methods. We use both synthetic data simulated from three test functions and the real data from the HPC setting. We then compare different methods in terms of design efficiency, prediction accuracy, and scalability. In our synthetic and real data analysis, GP with SFDs outperforms in most scenarios. With respect to the choice of approximation models, GP is recommended if the data are collected by SFDs. If data are collected using GBDs, both GP and Delaunay can be considered. With the best choice of approximation method, the performance of SFDs and GBD depends on the property of the underlying surface. For the cases in which SFDs perform better, the number of design points needed for SFDs is about half of or less than that of the GBD to achieve the same prediction accuracy. Although we observe that the GBD can also outperform SFDs for smooth underlying surface, GBD is not scalable to high dimensional experimental regions. Therefore, SFDs that can be tailored to high dimension and non-smooth surface are recommended especially when large numbers of input factors need to be considered in the model. This article has online supplementary materials.
KW - Computer experiment
KW - Delaunay triangulation
KW - Gaussian process
KW - MARS
KW - linear Shepard’s method
KW - space-filling design
UR - http://www.scopus.com/inward/record.url?scp=85125316446&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125316446&partnerID=8YFLogxK
U2 - https://doi.org/10.1080/00224065.2022.2035285
DO - https://doi.org/10.1080/00224065.2022.2035285
M3 - Article
SN - 0022-4065
VL - 55
SP - 88
EP - 103
JO - Journal of Quality Technology
JF - Journal of Quality Technology
IS - 1
ER -