TY - GEN
T1 - Development of a laparoscope with multi-resolution foveation capability for minimally invasive surgery
AU - Qin, Yi
AU - Hua, Hong
AU - Nguyen, Mike
PY - 2013
Y1 - 2013
N2 - Laparoscope is the essential tool for minimally invasive surgery (MIS) within the abdominal cavity. However, the focal length of a conventional laparoscope is fixed. Therefore, it suffers from the tradeoff between field of view (FOV) and spatial resolution. In order to obtain large optical magnification to see more details, a conventional laparoscope is usually designed with a small working distance, typically less than 50mm. Such a small working distance limits the field of coverage, which causes the situational awareness challenge during the laparoscopic surgery. We developed a multi-resolution foveated laparoscope (MRFL) aiming to address this limitation. The MRFL was designed to support a large working distance range from 80mm to 180mm. It is able to simultaneously provide both wide-angle overview and high-resolution image of the surgical field in real time within a fully integrated system. The high-resolution imaging probe can automatically scan and engage to any subfield of the wide-angle view. During the surgery, MRFL does not need to move; therefore it can reduce the instruments conflicts. The FOV of the wide-angle imaging probe is 80° and that of the high-resolution imaging probe is 26.6°. The maximum resolution is about 45um in the object space at an 80mm working distance, which is about 5 times as good as a conventional laparoscope at a 50mm working distance. The prototype can realize an equivalent 10 million-pixel resolution by using only two HD cameras because of its foveation capability. It saves the bandwidth and improves the frame rate compared to the use of a super resolution camera. It has great potential to aid safety and accuracy of the laparoscopic surgery.
AB - Laparoscope is the essential tool for minimally invasive surgery (MIS) within the abdominal cavity. However, the focal length of a conventional laparoscope is fixed. Therefore, it suffers from the tradeoff between field of view (FOV) and spatial resolution. In order to obtain large optical magnification to see more details, a conventional laparoscope is usually designed with a small working distance, typically less than 50mm. Such a small working distance limits the field of coverage, which causes the situational awareness challenge during the laparoscopic surgery. We developed a multi-resolution foveated laparoscope (MRFL) aiming to address this limitation. The MRFL was designed to support a large working distance range from 80mm to 180mm. It is able to simultaneously provide both wide-angle overview and high-resolution image of the surgical field in real time within a fully integrated system. The high-resolution imaging probe can automatically scan and engage to any subfield of the wide-angle view. During the surgery, MRFL does not need to move; therefore it can reduce the instruments conflicts. The FOV of the wide-angle imaging probe is 80° and that of the high-resolution imaging probe is 26.6°. The maximum resolution is about 45um in the object space at an 80mm working distance, which is about 5 times as good as a conventional laparoscope at a 50mm working distance. The prototype can realize an equivalent 10 million-pixel resolution by using only two HD cameras because of its foveation capability. It saves the bandwidth and improves the frame rate compared to the use of a super resolution camera. It has great potential to aid safety and accuracy of the laparoscopic surgery.
KW - foveated imaging system
KW - hybrid diffractive-refractive
KW - multiple resolution
UR - http://www.scopus.com/inward/record.url?scp=84877863673&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877863673&partnerID=8YFLogxK
U2 - 10.1117/12.2005180
DO - 10.1117/12.2005180
M3 - Conference contribution
SN - 9780819493422
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Design and Quality for Biomedical Technologies VI
T2 - Design and Quality for Biomedical Technologies VI
Y2 - 2 February 2013 through 3 February 2013
ER -