Distributed generalized Nash equilibrium seeking in aggregative games under partial-decision information via dynamic tracking

Giuseppe Belgioioso, Angelia Nedic, Sergio Grammatico

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

We design a distributed algorithm for generalized Nash equilibrium seeking in aggregative games with linear coupling constraints under partial-decision information, i.e., the agents have no direct access to the aggregate decision. The algorithm is derived by including dynamic tracking together with a standard projected pseudo-gradient algorithm in a fully-distributed fashion. The convergence analysis of the algorithm relies on the framework of monotone operator splitting and Krasnosel'skii-Mann fixed-point iteration with errors.

Original languageEnglish (US)
Title of host publication2019 IEEE 58th Conference on Decision and Control, CDC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5948-5954
Number of pages7
ISBN (Electronic)9781728113982
DOIs
StatePublished - Dec 2019
Event58th IEEE Conference on Decision and Control, CDC 2019 - Nice, France
Duration: Dec 11 2019Dec 13 2019

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2019-December

Conference

Conference58th IEEE Conference on Decision and Control, CDC 2019
Country/TerritoryFrance
CityNice
Period12/11/1912/13/19

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Distributed generalized Nash equilibrium seeking in aggregative games under partial-decision information via dynamic tracking'. Together they form a unique fingerprint.

Cite this