TY - JOUR
T1 - Effects of nicotine exposure on T cell development in fetal thymus organ culture
T2 - Arrest of T cell maturation
AU - Middlebrook, Aaron J.
AU - Martina, Cherie
AU - Chang, Yung
AU - Lukas, Ronald J.
AU - DeLuca, Dominick
PY - 2002/9/15
Y1 - 2002/9/15
N2 - There is evidence for both physiological functions of the natural neurotransmitter, acetylcholine, and pharmacological actions of the plant alkaloid, nicotine, on the development and function of the immune system. The effects of continuous exposure to nicotine over a 12-day course of fetal thymus organ culture (FTOC) were studied, and thymocytes were analyzed by flow cytometry. In the presence of very low concentrations of nicotine many more immature T cells (defined by low or negative TCR expression) and fewer mature T cells (intermediate or high expression of TCR) were produced. In addition, the numbers of cells expressing CD69 and, to a lesser extent, CD95 (Fas) were increased. These effects took place when fetal thymus lobes from younger (13-14 days gestation) pups were used for FTOC. If FTOC were set up using tissue from older (15-16 days gestation pups), nicotine had little effect, suggesting that it may act only on immature T cell precursors. Consistent with an increase in immature cells, the expression of recombinase-activating genes was found to be elevated. Nicotine effects were partially blocked by the simultaneous addition of the nicotinic antagonist d-tubocurarine. Furthermore, d-tubocurarine alone blocked the development of both immature and mature murine thymocytes, suggesting the presence of an endogenous ligand that may engage nicotinic acetylcholine receptors on developing thymocytes and influence the course of normal thymic ontogeny.
AB - There is evidence for both physiological functions of the natural neurotransmitter, acetylcholine, and pharmacological actions of the plant alkaloid, nicotine, on the development and function of the immune system. The effects of continuous exposure to nicotine over a 12-day course of fetal thymus organ culture (FTOC) were studied, and thymocytes were analyzed by flow cytometry. In the presence of very low concentrations of nicotine many more immature T cells (defined by low or negative TCR expression) and fewer mature T cells (intermediate or high expression of TCR) were produced. In addition, the numbers of cells expressing CD69 and, to a lesser extent, CD95 (Fas) were increased. These effects took place when fetal thymus lobes from younger (13-14 days gestation) pups were used for FTOC. If FTOC were set up using tissue from older (15-16 days gestation pups), nicotine had little effect, suggesting that it may act only on immature T cell precursors. Consistent with an increase in immature cells, the expression of recombinase-activating genes was found to be elevated. Nicotine effects were partially blocked by the simultaneous addition of the nicotinic antagonist d-tubocurarine. Furthermore, d-tubocurarine alone blocked the development of both immature and mature murine thymocytes, suggesting the presence of an endogenous ligand that may engage nicotinic acetylcholine receptors on developing thymocytes and influence the course of normal thymic ontogeny.
UR - http://www.scopus.com/inward/record.url?scp=0037105563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037105563&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.169.6.2915
DO - 10.4049/jimmunol.169.6.2915
M3 - Article
C2 - 12218105
SN - 0022-1767
VL - 169
SP - 2915
EP - 2924
JO - Journal of Immunology
JF - Journal of Immunology
IS - 6
ER -