TY - GEN
T1 - Embedded unsupervised feature selection
AU - Wang, Suhang
AU - Tang, Jiliang
AU - Liu, Huan
N1 - Publisher Copyright: Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Sparse learning has been proven to be a powerful technique in supervised feature selection, which allows to embed feature selection into the classification (or regression) problem. In recent years, increasing attention has been on applying spare learning in unsupervised feature selection. Due to the lack of label information, the vast majority of these algorithms usually generate cluster labels via clustering algorithms and then formulate unsupervised feature selection as sparse learning based supervised feature selection with these generated cluster labels. In this paper, we propose a novel unsupervised feature selection algorithm EUFS, which directly embeds feature selection into a clustering algorithm via sparse learning without the transformation. The Alternating Direction Method of Multipliers is used to address the optimization problem of EUFS. Experimental results on various benchmark datasets demonstrate the effectiveness of the proposed framework EUFS.
AB - Sparse learning has been proven to be a powerful technique in supervised feature selection, which allows to embed feature selection into the classification (or regression) problem. In recent years, increasing attention has been on applying spare learning in unsupervised feature selection. Due to the lack of label information, the vast majority of these algorithms usually generate cluster labels via clustering algorithms and then formulate unsupervised feature selection as sparse learning based supervised feature selection with these generated cluster labels. In this paper, we propose a novel unsupervised feature selection algorithm EUFS, which directly embeds feature selection into a clustering algorithm via sparse learning without the transformation. The Alternating Direction Method of Multipliers is used to address the optimization problem of EUFS. Experimental results on various benchmark datasets demonstrate the effectiveness of the proposed framework EUFS.
UR - http://www.scopus.com/inward/record.url?scp=84959482669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959482669&partnerID=8YFLogxK
M3 - Conference contribution
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 470
EP - 476
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -