Abstract
Unmanned Aerial Vehicles (UAVs) have shown themselves to be highly capable in intelligence gathering, as well as a possible future deployment platform for munitions. Currently UAVs are supervised or piloted remotely, meaning that their behavior is not autonomous throughout the night. For uncontested missions this is a viable method; however, if confronted by an adversary, UAVs may be required to execute maneuvers faster than a remote pilot could perform them in order to evade being targeted. In this paper we give a description of a non-linear model predictive controller in which evasive maneuvers in three dimensions are encoded for a fixed wing UAV for the purposes of this pursuit/evasion game.
Original language | English (US) |
---|---|
Article number | WeC09.5 |
Pages (from-to) | 2609-2614 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 3 |
DOIs | |
State | Published - 2004 |
Event | 2004 43rd IEEE Conference on Decision and Control (CDC) - Nassau, Bahamas Duration: Dec 14 2004 → Dec 17 2004 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization