TY - JOUR
T1 - Estimating the feasibility of 21cm-Lyα synergies using the hydrogen Epoch of Reionization array
AU - Cox, Tyler A.
AU - Jacobs, Daniel C.
AU - Murray, Steven G.
N1 - Funding Information: The authors w ould lik e to thank Alexander van Engelen and Judd Bowman for their helpful comments on an early draft. This material is based upon work supported by the National Science Foundation under Grant #1636646 and #1836019 and institutional support from the HERA collaboration partners. This research is funded in part by the Gordon and Betty Moore Foundation. HERA is hosted by the South African Radio Astronomy Observatory, which is a facility of the National Research F oundation, an agenc y of the Department of Science and Innovation. Publisher Copyright: © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - Cross-correlating 21cm and Lyα intensity maps of the Epoch of Reionization promises to be a powerful tool for exploring the properties of the first galaxies. Next-generation intensity mapping experiments such as the Hydrogen Epoch of Reionization Array (HERA) and SPHEREx will individually probe reionization through the power spectra of the 21cm and Lyα lines respectively, but will be limited by bright foregrounds and instrumental systematics. Cross-correlating these measurements could reduce systematics, potentially tightening constraints on the inferred astrophysical parameters. In this study, we present forecasts of cross-correlation taking into account the effects of exact uv-sampling and foreground filtering to estimate the feasibility of HERAxSPHEREx making a detection of the 21cm-Lyα cross-power spectrum. We also project the sensitivity of a cross-power spectrum between HERA and the proposed next-generation Cosmic Dawn Intensity Mapper. By isolating the sources of uncertainty, we explore the impacts of experimental limitations such as foreground filtering and Lyα thermal noise uncertainty have on making a detection of the cross-power spectrum. We then implement this strategy in a simulation of the cross-power spectrum and observational error to identify redshifts where fiducial 21cmFAST models predict the highest signal-to-noise detection (z ∼8). We conclude that detection of the SPHEREx-HERA cross-correlation will require an optimistic level of 21cm foreground filtering, as well as deeper thermal noise integrations due to a lack of overlapping sensitive modes but for CDIM with its larger range of scales and lower noise forecast detection levels, may be possible even with stricter 21cm foreground filtering.
AB - Cross-correlating 21cm and Lyα intensity maps of the Epoch of Reionization promises to be a powerful tool for exploring the properties of the first galaxies. Next-generation intensity mapping experiments such as the Hydrogen Epoch of Reionization Array (HERA) and SPHEREx will individually probe reionization through the power spectra of the 21cm and Lyα lines respectively, but will be limited by bright foregrounds and instrumental systematics. Cross-correlating these measurements could reduce systematics, potentially tightening constraints on the inferred astrophysical parameters. In this study, we present forecasts of cross-correlation taking into account the effects of exact uv-sampling and foreground filtering to estimate the feasibility of HERAxSPHEREx making a detection of the 21cm-Lyα cross-power spectrum. We also project the sensitivity of a cross-power spectrum between HERA and the proposed next-generation Cosmic Dawn Intensity Mapper. By isolating the sources of uncertainty, we explore the impacts of experimental limitations such as foreground filtering and Lyα thermal noise uncertainty have on making a detection of the cross-power spectrum. We then implement this strategy in a simulation of the cross-power spectrum and observational error to identify redshifts where fiducial 21cmFAST models predict the highest signal-to-noise detection (z ∼8). We conclude that detection of the SPHEREx-HERA cross-correlation will require an optimistic level of 21cm foreground filtering, as well as deeper thermal noise integrations due to a lack of overlapping sensitive modes but for CDIM with its larger range of scales and lower noise forecast detection levels, may be possible even with stricter 21cm foreground filtering.
KW - cosmology: dark ages, reionization, first stars
KW - galaxies: high-redshift
KW - instrumentation: interferometers
UR - http://www.scopus.com/inward/record.url?scp=85127948464&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127948464&partnerID=8YFLogxK
U2 - 10.1093/mnras/stac486
DO - 10.1093/mnras/stac486
M3 - Article
SN - 0035-8711
VL - 512
SP - 792
EP - 801
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -