Experimental results for light-induced boiling in water-based graphite nanoparticle suspensions

Robert A. Taylor, Patrick Phelan, Ronald Adrian, Todd Otanicar, Ravi S. Prasher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

One relatively simple subset of nanotechnology is nanofluids, obtained by the addition of nanoparticles to a conventional base fluid. The promise of nanofluids stems from the fact that at relatively small particle loading (typically <1% by volume) significant enhancement in thermal transport may be possible [1-3]. Since there are a wide variety of nanoparticle materials to choose from, nanofluidic systems can be tuned to fit a number of applications. This research focuses on direct thermal collection of light energy using highly absorptive nanofluids. Experimental tests are conducted using a 0.1% by volume graphite/water (30nm nominal particle diameter) nanofluid exposed to a 130 mW, 532 nm, continuous laser. A lens is placed between the laser and the fluid to achieve a high-energy flux (≃ 490 Wcm-2). Since initially over 99.9% of the light is absorbed in a path length of 0.1 mm, the irradiated portion of the base fluid collects enough energy to vaporize. Heuristic methods of analysis demonstrate this situation incorporates several interesting modes of heat transfer and fluid mechanics. These experiments also reveal the possibility for novel solar collectors in which the working fluid directly absorbs energy and undergoes phase change in a single step.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Summer Heat Transfer Conference 2009, HT2009
Pages155-163
Number of pages9
DOIs
StatePublished - 2009
Event2009 ASME Summer Heat Transfer Conference, HT2009 - San Francisco, CA, United States
Duration: Jul 19 2009Jul 23 2009

Publication series

NameProceedings of the ASME Summer Heat Transfer Conference 2009, HT2009
Volume1

Other

Other2009 ASME Summer Heat Transfer Conference, HT2009
Country/TerritoryUnited States
CitySan Francisco, CA
Period7/19/097/23/09

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Experimental results for light-induced boiling in water-based graphite nanoparticle suspensions'. Together they form a unique fingerprint.

Cite this