TY - JOUR
T1 - Experimental study of interfacial transition zones between geopolymer binder and recycled aggregate
AU - Ren, Xin
AU - Zhang, Lianyang
N1 - Funding Information: This work is supported by the Environmental Research and Education Foundation (EREF), United States. The authors gratefully acknowledge the Salt River Materials Group in Phoenix, Arizona for providing the fly ash used in this investigation. Publisher Copyright: © 2018 Elsevier Ltd
PY - 2018/4/10
Y1 - 2018/4/10
N2 - This paper experimentally studies the interfacial transition zone (ITZ) between geopolymer binder (GP) and recycled aggregate (RA). Since RA consists of exposed stone surfaces and the attached paste/mortar from the original ordinary Portland cement (OPC) concrete, both the ITZ between GP and natural aggreate (NA) and that between GP and residual OPC paste/mortar (ROPM) were studied. For comparison, the ITZ between OPC paste and NA and that between OPC paste and ROPM were also studied. The GP was produced from waste concrete fines (WCF) and class F fly ash (FA) at a WCF/FA mass ratio of 1, using a mixture of 10 M NaOH solution and Na2SiO3 solution at a mass ratio of 2 as the alkaline activator. Four-point bending tests were conducted to measure the bond strength of the different types of ITZs at a water to solid (W/S) of 0.30, 0.35 and 0.40 for the GP and OPC paste after 7 and 14 days’ curing, respectively. Scanning electron microscopy (SEM) imaging was also performed to investigate the microstructure of the ITZs. The results indicate that when NA is used, the bond strength of both the GP-NA and OPC-NA ITZs decreases with higher W/S ratio. This is mainly because higher W/S ratio leads to a more porous microstructure in the ITZ. When ROPM is used, higher W/S ratio leads to smaller bond strength for the GP-ROPM ITZ but greater bond strength for the OPC-ROPM ITZ. This phenomenon is mainly caused by the high water absorption capacity of ROPM. Based on the measured bond strength values for the NA- and ROPM-based ITZs, the bond strength of the RA-based ITZs was estimated by considering the average area coverage of ROPM on the RA surface. The GP-RA ITZ has high bond strength, implying the great potential for utilizing waste concrete (both WCF and RA) to produce geopolymer concrete.
AB - This paper experimentally studies the interfacial transition zone (ITZ) between geopolymer binder (GP) and recycled aggregate (RA). Since RA consists of exposed stone surfaces and the attached paste/mortar from the original ordinary Portland cement (OPC) concrete, both the ITZ between GP and natural aggreate (NA) and that between GP and residual OPC paste/mortar (ROPM) were studied. For comparison, the ITZ between OPC paste and NA and that between OPC paste and ROPM were also studied. The GP was produced from waste concrete fines (WCF) and class F fly ash (FA) at a WCF/FA mass ratio of 1, using a mixture of 10 M NaOH solution and Na2SiO3 solution at a mass ratio of 2 as the alkaline activator. Four-point bending tests were conducted to measure the bond strength of the different types of ITZs at a water to solid (W/S) of 0.30, 0.35 and 0.40 for the GP and OPC paste after 7 and 14 days’ curing, respectively. Scanning electron microscopy (SEM) imaging was also performed to investigate the microstructure of the ITZs. The results indicate that when NA is used, the bond strength of both the GP-NA and OPC-NA ITZs decreases with higher W/S ratio. This is mainly because higher W/S ratio leads to a more porous microstructure in the ITZ. When ROPM is used, higher W/S ratio leads to smaller bond strength for the GP-ROPM ITZ but greater bond strength for the OPC-ROPM ITZ. This phenomenon is mainly caused by the high water absorption capacity of ROPM. Based on the measured bond strength values for the NA- and ROPM-based ITZs, the bond strength of the RA-based ITZs was estimated by considering the average area coverage of ROPM on the RA surface. The GP-RA ITZ has high bond strength, implying the great potential for utilizing waste concrete (both WCF and RA) to produce geopolymer concrete.
KW - Bond strength
KW - Four-point bending test
KW - Geopolymer
KW - Interfacial transition zone
KW - Microstructure
KW - Recycled aggregate
UR - http://www.scopus.com/inward/record.url?scp=85042415200&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042415200&partnerID=8YFLogxK
U2 - 10.1016/j.conbuildmat.2018.02.111
DO - 10.1016/j.conbuildmat.2018.02.111
M3 - Article
SN - 0950-0618
VL - 167
SP - 749
EP - 756
JO - Construction and Building Materials
JF - Construction and Building Materials
ER -