Focus diverse phase retrieval testbed development of continuous wavefront sensing for space telescope applications

Hyukmo Kang, Kyle Van Gorkom, Jess Johnson, Ole Singelstad, Aaron Goldtooth, Daewook Kim, Ewan S. Douglas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Continuous wavefront sensing on future space telescopes allows relaxation of stability requirements while still allowing on-orbit diffraction-limited o ptical p erformance. We c onsider t he s uitability o f p hase r etrieval t o continuously reconstruct the phase of a wavefront from on-orbit irradiance measurements or point spread function (PSF) images. As phase retrieval algorithms do not require reference optics or complicated calibrations, it is a preferable technique for space observatories, such as the Hubble Space Telescope or the James Webb Space Telescope. To increase the robustness and dynamic range of the phase retrieval algorithm, multiple PSF images with known amount of defocus can be utilized. In this study, we describe a recently constructed testbed including a 97 actuator deformable mirror, changeable entrance pupil stops, and a light source. The aligned system wavefront error is below ≈ 30 nm. We applied various methods to generate a known wavefront error, such as defocus and/or other aberrations, and found the accuracy and precision of the root mean squared error of the reconstructed wavefronts to be less than ≈ 10 nm and ≈ 2 nm, respectively. Further, we discuss the signal-to-noise ratios required for continuous dynamic wavefront sensing. We also simulate the case of spacecraft drifting and verify the performance of the phase retrieval algorithm for continuous wavefront sensing in the presence of realistic disturbances.

Original languageEnglish (US)
Title of host publicationAstronomical Optics
Subtitle of host publicationDesign, Manufacture, and Test of Space and Ground Systems IV
EditorsTony B. Hull, Daewook Kim, Pascal Hallibert
PublisherSPIE
ISBN (Electronic)9781510665682
DOIs
StatePublished - 2023
EventAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV 2023 - San Diego, United States
Duration: Aug 21 2023Aug 24 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12677

Conference

ConferenceAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV 2023
Country/TerritoryUnited States
CitySan Diego
Period8/21/238/24/23

Keywords

  • phase retrieval
  • space telescope
  • wavefront sensing

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Focus diverse phase retrieval testbed development of continuous wavefront sensing for space telescope applications'. Together they form a unique fingerprint.

Cite this