Abstract
We have proposed to develop a prototype 0.5-meter far-infrared telescope and heterodyne receiver/spectrometer system for fully-automated remote operation at the summit of Dome A, the highest point on the Antarctic plateau. The unparalleled stability, exceptional dryness, low wind and extreme cold make Dome A a ground-based site without equal for astronomy at infrared and submillimeter wavelengths. HEAT, the High Elevation Antarctic Terahertz Telescope, will operate in the atmospheric windows between 150 and 400 μm, in which the most crucial astrophysical spectral diagnostics of the formation of galaxies, stars, planets, and life are found. At these wavelengths, HEAT will have high aperture efficiency and excellent atmospheric transmission most of the year. The proposed superheterodyne receiver system will be comprised of 0.8 THz, 1.4 THz and 1.9 THz channels which will observe the pivotal J=7→6 line of CO, the J=2→1 line of atomic carbon, and the far-infrared fine structure lines of N+ and C+, the brightest emission lines in the entire Milky Way Galaxy. When combined with the HEAT telescope, the receiver system represents a uniquely powerful instrument for reconstructing the history of star formation in our Galaxy, with application to the distant Universe. The receiver system itself serves as a valuable testbed for heterodyne Terahertz components, using leading-edge mixer, local oscillator, low-noise amplifier, cryogenic, and digital signal processing technologies that will play essential roles in future Terahertz observatories. The proposed study will pave the way for future astronomical investigations from Dome A.
Original language | English (US) |
---|---|
Pages (from-to) | 470-480 |
Number of pages | 11 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5489 |
Issue number | PART 1 |
DOIs | |
State | Published - 2004 |
Event | Ground-based Telescopes - Glasgow, United Kingdom Duration: Jun 21 2004 → Jun 25 2004 |
Keywords
- Heterodyne instrumentation
- Interstellar medium
- Molecular spectroscopy
- Star formation
- Terahertz
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering