Abstract
We have conducted laboratory experiments with analog crystalline silicon carbide (SiC) grains using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The 3C polytype of SiC was used - the type commonly produced in the envelopes of asymptotic giant branch (AGB) stars. We rapidly heated small (∼50 nm) synthetic SiC crystals under vacuum to ∼1300 K and bombarded them with 150 keV Xe ions. TEM imaging and EELS spectroscopic mapping show that such heating and bombardment leaches silicon from the SiC surface, creating layered graphitic sheets. Surface defects in the crystals were found to distort the six-membered rings characteristic of graphite, creating hemispherical structures with diameters matching that of C60. Such nonplanar features require the formation of five-membered rings. We also identified a circumstellar grain, preserved inside the Murchison meteorite, that contains the remnant of an SiC core almost fully encased by graphite, contradicting long-standing thermodynamic predictions of material condensation. Our combined laboratory data suggest that C60 can undergo facile formation from shock heating and ion bombardment of circumstellar SiC grains. Such heating/bombardment could occur in the protoplanetary nebula phase, accounting for the observation of C60 in these objects, in planetary nebulae (PNs) and other interstellar sources receiving PN ejecta. The synthesis of C60 in astronomical sources poses challenges, as the assembly of 60 pure carbon atoms in an H-rich environment is difficult. The formation of C60 from the surface decomposition of SiC grains is a viable mechanism that could readily occur in the heterogeneous, hydrogen-dominated gas of evolved circumstellar shells.
Original language | English (US) |
---|---|
Article number | L43 |
Journal | Astrophysical Journal Letters |
Volume | 883 |
Issue number | 2 |
DOIs | |
State | Published - Oct 1 2019 |
Keywords
- ISM: molecules
- astrochemistry
- circumstellar matter
- methods: laboratory: solid state
- stars: AGB and post-AGB
- stars: winds, outflows
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Formation of Interstellar C60 from Silicon Carbide Circumstellar Grains'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Astrophysical Journal Letters, Vol. 883, No. 2, L43, 01.10.2019.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Formation of Interstellar C60 from Silicon Carbide Circumstellar Grains
AU - Bernal, J. J.
AU - Haenecour, P.
AU - Howe, J.
AU - Zega, T. J.
AU - Amari, S.
AU - Ziurys, L. M.
N1 - Funding Information: J. J. Bernal P. Haenecour J. Howe T. J. Zega S. Amari L. M. Ziurys J. J. Bernal P. Haenecour J. Howe T. J. Zega S. Amari L. M. Ziurys Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 85721, USA Department of Materials Science and Engineering, and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada Department of Materials Science and Engineering, University of Arizona, USA Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA Arizona Radio Observatory, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA J. J. Bernal, P. Haenecour, J. Howe, T. J. Zega, S. Amari and L. M. Ziurys 2019-10-01 2019-10-01 15:01:31 cgi/release: Article released bin/incoming: New from .zip National Science Foundation AST-1515568 National Aeronautics and Space Administration NNX15AD94G National Aeronautics and Space Administration NNX15AJ22G National Aeronautics and Space Administration NNX16A31G Department of Energy DE-AC07-051D14517 National Institutes of Health R25GM062584 National Aeronautics and Space Administration NNX12AL47G National Science Foundation 1531243 yes We have conducted laboratory experiments with analog crystalline silicon carbide (SiC) grains using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The 3C polytype of SiC was used—the type commonly produced in the envelopes of asymptotic giant branch (AGB) stars. We rapidly heated small (∼50 nm) synthetic SiC crystals under vacuum to ∼1300 K and bombarded them with 150 keV Xe ions. TEM imaging and EELS spectroscopic mapping show that such heating and bombardment leaches silicon from the SiC surface, creating layered graphitic sheets. Surface defects in the crystals were found to distort the six-membered rings characteristic of graphite, creating hemispherical structures with diameters matching that of C 60 . Such nonplanar features require the formation of five-membered rings. We also identified a circumstellar grain, preserved inside the Murchison meteorite, that contains the remnant of an SiC core almost fully encased by graphite, contradicting long-standing thermodynamic predictions of material condensation. Our combined laboratory data suggest that C 60 can undergo facile formation from shock heating and ion bombardment of circumstellar SiC grains. Such heating/bombardment could occur in the protoplanetary nebula phase, accounting for the observation of C 60 in these objects, in planetary nebulae (PNs) and other interstellar sources receiving PN ejecta. The synthesis of C 60 in astronomical sources poses challenges, as the assembly of 60 pure carbon atoms in an H-rich environment is difficult. The formation of C 60 from the surface decomposition of SiC grains is a viable mechanism that could readily occur in the heterogeneous, hydrogen-dominated gas of evolved circumstellar shells. � 2019. The American Astronomical Society. All rights reserved. Amari S., Zinner E. and Gallino, R R. 2014 GeCoA 133 479 10.1016/j.gca.2014.01.006 Amari S., Zinner E. and Gallino, R R. GeCoA 0016-7037 133 2014 479 Berné O., Cox N. L. J., Mulas G. and Joblin C. 2017 A&A 605 L1 10.1051/0004-6361/201630325 Berné O., Cox N. L. J., Mulas G. and Joblin C. A&A 0004-6361 605 2017 L1 Berné O., Montillaud J. and Joblin C. 2015 A&A 557 A133 10.1051/0004-6361/201425338 Berné O., Montillaud J. and Joblin C. A&A 0004-6361 557 2015 A133 Berné O. and Tielens A. G. G. M. 2012 PNAS 109 401 10.1073/pnas.1114207108 Berné O. and Tielens A. G. G. M. PNAS 0027-8424 109 2012 401 Cami J., Bernard-Salas J., Peeters E. and Malek S. E. 2010 Sci. 329 1180 10.1126/science.1192035 Cami J., Bernard-Salas J., Peeters E. and Malek S. E. Sci. 329 2010 1180 Cami J., Bernard-Salas J., Peeters E. and Malek S. E. 2011 IAU Symp. 280, The Molecular Universe ed J. Cernicharo and R. Bachiller (Cambridge: Cambridge Univ. Press) 216 Cami J., Bernard-Salas J., Peeters E. and Malek S. E. ed Cernicharo J. and Bachiller R. IAU Symp. 280, The Molecular Universe 2011 216 Campbell E. K., Holz M., Gerlich D. and Maier J. P. 2015 Natur 523 322 10.1038/nature14566 Campbell E. K., Holz M., Gerlich D. and Maier J. P. Natur 523 2015 322 Carpentier Y., Féraud G., Dartois E. et al 2012 A&A 548 A40 10.1051/0004-6361/201118700 Carpentier Y., Féraud G., Dartois E. et al A&A 0004-6361 548 2012 A40 Cataldo F., Strazzulla G. and Iglesias-Groth S. 2009 MNRAS 394 615 10.1111/j.1365-2966.2008.14369.x Cataldo F., Strazzulla G. and Iglesias-Groth S. MNRAS 0035-8711 394 2009 615 Croat T. K., Stadermann F. J. and Bernatowicz T. J. 2010 AJ 139 2159 10.1088/0004-6256/139/6/2159 Croat T. K., Stadermann F. J. and Bernatowicz T. J. AJ 1538-3881 139 6 2159 2010 2159 Daulton T. L., Bernatowicz T. J., Lewis R. S. et al 2002 Sci. 296 1852 10.1126/science.1071136 Daulton T. L., Bernatowicz T. J., Lewis R. S. et al Sci. 296 2002 1852 De Vries M. S., Reihs K., Wendt H. R. et al 1993 GeCoA 57 933 10.1016/0016-7037(93)90179-Z De Vries M. S., Reihs K., Wendt H. R. et al GeCoA 0016-7037 57 1993 933 Díaz-Luis J. J., García-Hernández D. A., Manchado A. et al 2018 AJ 155 105 10.3847/1538-3881/aaa75c Díaz-Luis J. J., García-Hernández D. A., Manchado A. et al AJ 1538-3881 155 3 105 2018 105 Dorschner J. and Henning T. 1995 A&ARv 6 271 10.1007/BF00873686 Dorschner J. and Henning T. A&ARv 0935-4956 6 4 1995 271 Duan S., Liu X., Wang Y. et al 2017 RSC Advances 7 21124 10.1039/C7RA01530E Duan S., Liu X., Wang Y. et al RSC Advances 7 2017 21124 Duley W. W. and Hu A. 2012 ApJL 745 L11 10.1088/2041-8205/745/1/L11 Duley W. W. and Hu A. ApJL 0004-637X 745 2012 L11 García-Hernández D. A. 2012 IAU Symp. 283, Planetary Nebulae: An Eye to the Future ed A. Manchado, L. Stanghellini and Schoenberner (Cambridge: Cambridge Univ. Press) 148 García-Hernández D. A. ed Manchado A., Stanghellini L. and Schoenberner IAU Symp. 283, Planetary Nebulae: An Eye to the Future 2012 148 García-Hernández D. A., Iglesias-Groth S., Acosta-Pulido J. A. et al 2011 ApJL 737 L30 10.1088/2041-8205/737/2/L30 García-Hernández D. A., Iglesias-Groth S., Acosta-Pulido J. A. et al ApJL 0004-637X 737 2011 L30 García-Hernández D. A., Manchado A., García-Lario P. et al 2010 ApJL 724 L39 10.1088/2041-8205/724/1/L39 García-Hernández D. A., Manchado A., García-Lario P. et al ApJL 0004-637X 724 2010 L39 García-Hernández D. A., Rao N. K. and Lambert D. L. 2011 ApJ 729 126 10.1088/0004-637X/729/2/126 García-Hernández D. A., Rao N. K. and Lambert D. L. ApJ 0004-637X 729 2 126 2011 126 García-Hernández D. A., Villaver E., García-Lario P. et al 2012 ApJ 760 107 10.1088/0004-637X/760/2/107 García-Hernández D. A., Villaver E., García-Lario P. et al ApJ 0004-637X 760 2 107 2012 107 Hare J. P., Kroto H. W. and Taylor R. 1991 CPL 177 394 10.1016/0009-2614(91)85072-5 Hare J. P., Kroto H. W. and Taylor R. CPL 177 1991 394 Heck P. R., Amari S., Hoppe P. et al 2009 ApJ 701 1415 10.1088/0004-637X/701/2/1415 Heck P. R., Amari S., Hoppe P. et al ApJ 0004-637X 701 2 1415 2009 1415 Jäger C., Huisken F., Mutschke H., Llamas Jansa I. and Henning T. 2009 ApJ 696 706 10.1088/0004-637X/696/1/706 Jäger C., Huisken F., Mutschke H., Llamas Jansa I. and Henning T. ApJ 0004-637X 696 1 706 2009 706 Jura M. 1994 ApJ 434 713 10.1086/174773 Jura M. ApJ 434 1994 713 Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F. and Smalley R. E. 1985 Natur 318 162 10.1038/318162a0 Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F. and Smalley R. E. Natur 318 1985 162 Kusunoki M., Rokkaku M. and Suzuki T. 1997 ApPhL 71 2620 10.1063/1.120158 Kusunoki M., Rokkaku M. and Suzuki T. ApPhL 71 1997 2620 Kwok S. 1993 ARA&A 31 63 10.1146/annurev.aa.31.090193.000431 Kwok S. ARA&A 0066-4146 31 1993 63 Lebedeva I. V., Knizhnik A. A., Popov A. M. and Potapkin B. V. 2012 J. Phys. Chem. C 116 6572 10.1021/jp212165g Lebedeva I. V., Knizhnik A. A., Popov A. M. and Potapkin B. V. J. Phys. Chem. C 1932-7447 116 2012 6572 Merino P., Švec M., Martinez J. I. et al 2014 NatCo 5 3054 10.1038/ncomms4054 Merino P., Švec M., Martinez J. I. et al NatCo 5 2014 3054 Mishra N., Boecki J., Motta N. and Iacopi F. 2016 PSSAR 213 2277 10.1002/pssa.201600091 Mishra N., Boecki J., Motta N. and Iacopi F. PSSAR 213 2016 2277 Ramos-Larios G., Vázquez R., Guerrero M. A. et al 2012 MNRAS 423 3753 10.1111/j.1365-2966.2012.21165.x Ramos-Larios G., Vázquez R., Guerrero M. A. et al MNRAS 0035-8711 423 2012 3753 Roberts K. R. G., Smith K. T. and Sarre P. J. 2012 MNRAS 421 3277 10.1111/j.1365-2966.2012.20552.x Roberts K. R. G., Smith K. T. and Sarre P. J. MNRAS 0035-8711 421 2012 3277 Savage B. D. and Sembach K. R. 1996 ARA&A 34 279 10.1146/annurev.astro.34.1.279 Savage B. D. and Sembach K. R. ARA&A 0066-4146 34 1996 279 Schmidt D. R., Zack L. N. and Ziurys L. M. 2018 ApJL 864 L31 10.3847/2041-8213/aadc09 Schmidt D. R., Zack L. N. and Ziurys L. M. ApJL 0004-637X 864 2018 L31 Scott A., Duley W. W. and Pinho G. P. 1997 ApJL 489 L193 10.1086/316789 Scott A., Duley W. W. and Pinho G. P. ApJL 0004-637X 489 1997 L193 Sellgren K., Werner M. W., Ingalls J. G. et al 2010 ApJL 722 L54 10.1088/2041-8205/722/1/L54 Sellgren K., Werner M. W., Ingalls J. G. et al ApJL 0004-637X 722 2010 L54 Sevenster M. N. and Chapman J. M. 2001 ApJL 546 L119 10.1086/318867 Sevenster M. N. and Chapman J. M. ApJL 0004-637X 546 2001 L119 Thompson M. S., Zega T. J. and Howe J. Y. 2017 M&PS 52 413 10.1111/maps.12798 Thompson M. S., Zega T. J. and Howe J. Y. M&PS 1086-9379 52 2017 413 Ueda K., Iijima Y., Maruyama T. and Naritsuka S. 2010 Journal of Nanoscience and Nanotechnology 10 4054 10.1166/jnn.2010.1986 Ueda K., Iijima Y., Maruyama T. and Naritsuka S. Journal of Nanoscience and Nanotechnology 1533-4880 10 2010 4054 Van Bommel A. J., Crombeen J. E. and Van Tooren A. 1975 SurSc 48 463 Van Bommel A. J., Crombeen J. E. and Van Tooren A. SurSc 48 1975 463 Van de Steene G. C. and van Hoof P. A. M. 2003 A&A 406 773 10.1051/0004-6361:20030724 Van de Steene G. C. and van Hoof P. A. M. A&A 0004-6361 406 2003 773 Verchovsky A. B., Wright I. P. and Pillinger C. T. 2004 ApJ 607 611 10.1086/383230 Verchovsky A. B., Wright I. P. and Pillinger C. T. ApJ 0004-637X 607 1 611 2004 611 Watanabe H., Hisada Y., Mukainakano S. and Tanaka N. 2001 JMic 203 40 10.1046/j.1365-2818.2001.00902.x Watanabe H., Hisada Y., Mukainakano S. and Tanaka N. JMic 203 2001 40 Williams D. B. and Carter C. B. 2009 Transmission Electron Microscopy: A Textbook for Materials Science 2nd ed. (New York: Springer Science) 10.1007/978-0-387-76501-3 Williams D. B. and Carter C. B. Transmission Electron Microscopy: A Textbook for Materials Science 2009 Zega T. J., Nittler L. R., Busemann H., Hoppe P. and Stroud R. M. 2007 M&PS 42 1373 10.1111/j.1945-5100.2007.tb00580.x Zega T. J., Nittler L. R., Busemann H., Hoppe P. and Stroud R. M. M&PS 1086-9379 42 7-8 2007 1373 Zhang W., Yubing S., Zhen J. et al 2019 ApJ 872 38 10.3847/1538-4357/aafe10 Zhang W., Yubing S., Zhen J. et al ApJ 0004-637X 872 1 38 2019 38 Zhang Y. and Kwok S. 2011 ApJ 730 126 10.1088/0004-637X/730/2/126 Zhang Y. and Kwok S. ApJ 0004-637X 730 2 126 2011 126 Zhen J., Castellanos P., Paardekooper D. M., Linnartz H. and Tielens A. G. G. M. 2014 ApJL 797 L30 10.1088/2041-8205/797/2/L30 Zhen J., Castellanos P., Paardekooper D. M., Linnartz H. and Tielens A. G. G. M. ApJL 0004-637X 797 2014 L30 Ziurys L. M. 2006 PNAS 103 12274 10.1073/pnas.0602277103 Ziurys L. M. PNAS 0027-8424 103 2006 12274 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved..
PY - 2019/10/1
Y1 - 2019/10/1
N2 - We have conducted laboratory experiments with analog crystalline silicon carbide (SiC) grains using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The 3C polytype of SiC was used - the type commonly produced in the envelopes of asymptotic giant branch (AGB) stars. We rapidly heated small (∼50 nm) synthetic SiC crystals under vacuum to ∼1300 K and bombarded them with 150 keV Xe ions. TEM imaging and EELS spectroscopic mapping show that such heating and bombardment leaches silicon from the SiC surface, creating layered graphitic sheets. Surface defects in the crystals were found to distort the six-membered rings characteristic of graphite, creating hemispherical structures with diameters matching that of C60. Such nonplanar features require the formation of five-membered rings. We also identified a circumstellar grain, preserved inside the Murchison meteorite, that contains the remnant of an SiC core almost fully encased by graphite, contradicting long-standing thermodynamic predictions of material condensation. Our combined laboratory data suggest that C60 can undergo facile formation from shock heating and ion bombardment of circumstellar SiC grains. Such heating/bombardment could occur in the protoplanetary nebula phase, accounting for the observation of C60 in these objects, in planetary nebulae (PNs) and other interstellar sources receiving PN ejecta. The synthesis of C60 in astronomical sources poses challenges, as the assembly of 60 pure carbon atoms in an H-rich environment is difficult. The formation of C60 from the surface decomposition of SiC grains is a viable mechanism that could readily occur in the heterogeneous, hydrogen-dominated gas of evolved circumstellar shells.
AB - We have conducted laboratory experiments with analog crystalline silicon carbide (SiC) grains using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The 3C polytype of SiC was used - the type commonly produced in the envelopes of asymptotic giant branch (AGB) stars. We rapidly heated small (∼50 nm) synthetic SiC crystals under vacuum to ∼1300 K and bombarded them with 150 keV Xe ions. TEM imaging and EELS spectroscopic mapping show that such heating and bombardment leaches silicon from the SiC surface, creating layered graphitic sheets. Surface defects in the crystals were found to distort the six-membered rings characteristic of graphite, creating hemispherical structures with diameters matching that of C60. Such nonplanar features require the formation of five-membered rings. We also identified a circumstellar grain, preserved inside the Murchison meteorite, that contains the remnant of an SiC core almost fully encased by graphite, contradicting long-standing thermodynamic predictions of material condensation. Our combined laboratory data suggest that C60 can undergo facile formation from shock heating and ion bombardment of circumstellar SiC grains. Such heating/bombardment could occur in the protoplanetary nebula phase, accounting for the observation of C60 in these objects, in planetary nebulae (PNs) and other interstellar sources receiving PN ejecta. The synthesis of C60 in astronomical sources poses challenges, as the assembly of 60 pure carbon atoms in an H-rich environment is difficult. The formation of C60 from the surface decomposition of SiC grains is a viable mechanism that could readily occur in the heterogeneous, hydrogen-dominated gas of evolved circumstellar shells.
KW - ISM: molecules
KW - astrochemistry
KW - circumstellar matter
KW - methods: laboratory: solid state
KW - stars: AGB and post-AGB
KW - stars: winds, outflows
UR - http://www.scopus.com/inward/record.url?scp=85072963793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072963793&partnerID=8YFLogxK
U2 - https://doi.org/10.3847/2041-8213/ab4206
DO - https://doi.org/10.3847/2041-8213/ab4206
M3 - Article
SN - 2041-8205
VL - 883
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L43
ER -