TY - JOUR
T1 - Frequency dependent electrical properties of minerals and partial-melts
AU - Roberts, Jeffery J.
AU - Tyburczy, James
PY - 1994/3/1
Y1 - 1994/3/1
N2 - The resistance to current flow of minerals and partial-melts is a frequency dependent electrical property. Measurements of the frequency dependent electrical impedance of single crystal olivine, polycrystalline olivine, dunites, metapelites, and partial-melts, between 10-4 and 105 Hz, when plotted in the complex impedance plane, reveal arcs that correspond to different conduction mechanisms in the material being studied. In polycrystalline materials, two impedance arcs related to material properties (as opposed to electrode properties or electrode-sample interactions) are observed. Each impedance arc is activated over a distinct range of frequency, that is, the mechanisms occur in series. Based on experiments comparing single and polycrystalline impedance spectra, experiments on samples with different electrode configurations, and on samples of varying dimension, the mechanisms responsible for these impedance arcs are interpreted as grain interior conduction (σgi), grain boundary conduction (in polycrystalline materials;σgb), and sample-electrode interface effects, from highest to lowest frequency, respectively. Impedance spectra of natural dunitic rocks reveal analogous behavior, that is, σgb and σgi add in series. The grain boundaries do not enhance the conductivity of any of the materials studied (a direct result of the observed series electrical behavior) and, under certain conditions, limit the total conductivity of the grain interior-grain boundary system. By examining the frequency dependence of the electrical properties of partial-melts, it is possible to gain information about microstructure and the distribution of the melt phase and to determine the conditions under which the presence of melt enhances the total conductivity. Impedance spectra of olivine-basalt partial-melts indicate that at least two conduction mechanisms occur in series over the frequency range 10-4-105 Hz, similar to the observed electrical response of melt-absent polycrystalline materials. In a sample containing isolated melt pockets the intermediate frequency grain boundary impedance arc is modified by the presence of melt indicating series conduction behavior. In a sample with an interconnected melt phase the high frequency grain interior impedance arc is modified by the melt phase, indicating the initiation of parallel conduction behavior. Because field EM response versus frequency curves are used to derive conductivity versus depth profiles, it is important to perform laboratory experiments to understand the frequency-dependent electrical behavior of Earth materials. Activation energies determined from studies that measure conductivity at a single frequency may be erroneous because of the shift of the dominant conduction mechanism with frequency as temperature is varied.
AB - The resistance to current flow of minerals and partial-melts is a frequency dependent electrical property. Measurements of the frequency dependent electrical impedance of single crystal olivine, polycrystalline olivine, dunites, metapelites, and partial-melts, between 10-4 and 105 Hz, when plotted in the complex impedance plane, reveal arcs that correspond to different conduction mechanisms in the material being studied. In polycrystalline materials, two impedance arcs related to material properties (as opposed to electrode properties or electrode-sample interactions) are observed. Each impedance arc is activated over a distinct range of frequency, that is, the mechanisms occur in series. Based on experiments comparing single and polycrystalline impedance spectra, experiments on samples with different electrode configurations, and on samples of varying dimension, the mechanisms responsible for these impedance arcs are interpreted as grain interior conduction (σgi), grain boundary conduction (in polycrystalline materials;σgb), and sample-electrode interface effects, from highest to lowest frequency, respectively. Impedance spectra of natural dunitic rocks reveal analogous behavior, that is, σgb and σgi add in series. The grain boundaries do not enhance the conductivity of any of the materials studied (a direct result of the observed series electrical behavior) and, under certain conditions, limit the total conductivity of the grain interior-grain boundary system. By examining the frequency dependence of the electrical properties of partial-melts, it is possible to gain information about microstructure and the distribution of the melt phase and to determine the conditions under which the presence of melt enhances the total conductivity. Impedance spectra of olivine-basalt partial-melts indicate that at least two conduction mechanisms occur in series over the frequency range 10-4-105 Hz, similar to the observed electrical response of melt-absent polycrystalline materials. In a sample containing isolated melt pockets the intermediate frequency grain boundary impedance arc is modified by the presence of melt indicating series conduction behavior. In a sample with an interconnected melt phase the high frequency grain interior impedance arc is modified by the melt phase, indicating the initiation of parallel conduction behavior. Because field EM response versus frequency curves are used to derive conductivity versus depth profiles, it is important to perform laboratory experiments to understand the frequency-dependent electrical behavior of Earth materials. Activation energies determined from studies that measure conductivity at a single frequency may be erroneous because of the shift of the dominant conduction mechanism with frequency as temperature is varied.
UR - http://www.scopus.com/inward/record.url?scp=0028166899&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028166899&partnerID=8YFLogxK
U2 - 10.1007/BF00689861
DO - 10.1007/BF00689861
M3 - Article
SN - 0169-3298
VL - 15
SP - 239
EP - 262
JO - Surveys in Geophysics
JF - Surveys in Geophysics
IS - 2
ER -