Geologic studies of planetary surfaces using radar polarimetric imaging

Lynn M. Carter, Donald B. Campbell, Bruce A. Campbell

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon, and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provide important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition, and stratigraphy that will support a broader interpretation of surface evolution.

Original languageEnglish (US)
Article number5710953
Pages (from-to)770-782
Number of pages13
JournalProceedings of the IEEE
Issue number5
StatePublished - May 2011
Externally publishedYes


  • Moon
  • Venus
  • polarimetry
  • radar

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Geologic studies of planetary surfaces using radar polarimetric imaging'. Together they form a unique fingerprint.

Cite this