TY - JOUR
T1 - Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis
AU - Tabashnik, Bruce E.
AU - Liu, Yong Biao
AU - Malvar, Thomas
AU - Heckel, David G.
AU - Masson, Luke
AU - Ballester, Victoria
AU - Granero, Francisco
AU - Ménsua, José L.
AU - Ferré, Juan
PY - 1997/11/25
Y1 - 1997/11/25
N2 - Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming n cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.
AB - Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming n cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.
UR - http://www.scopus.com/inward/record.url?scp=0030667278&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030667278&partnerID=8YFLogxK
U2 - 10.1073/pnas.94.24.12780
DO - 10.1073/pnas.94.24.12780
M3 - Article
C2 - 9371752
SN - 0027-8424
VL - 94
SP - 12780
EP - 12785
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 24
ER -