H2O and temperature measurements in propagating hydrogen/oxygen flames using a broadband swept-wavelength ECQCL

Mark C. Phillips, Austin Butler, Nick G. Glumac, Michael C. DeMagistris, Morgan Ruesch, Andrea C. Zambon, Neeraj Sinha

Research output: Contribution to journalArticlepeer-review

Abstract

We present experimental results using a swept-wavelength external cavity quantum cascade laser (swept-ECQCL) diagnostic to measure broadband absorption spectra over a range of 920-1180 cm-1 (8.47-10.87 μm) with 2 ms temporal resolution in premixed hydrogen/oxygen flames propagating inside an enclosed chamber. Broadband spectral fits are used to determine time-resolved temperatures and column densities of H2O produced during combustion.Modeling of the flowfield within the test chamber under both equilibrium conditions and using a 1D freely propagating flame model is compared with the experiment in terms of temporal dynamics, temperatures, and H2O column density. Outputs from the numerical models were used to simulate radiative transport through an inhomogeneous combustion region and evaluate the performance of the spectral fitting model. Simulations show that probing hot-band H2O transitions in the high-temperature combustion regions minimizes errors due to spatial inhomogeneity. Good agreement is found between the experimental and modeling results considering experimental uncertainties and model assumptions.

Original languageEnglish (US)
Pages (from-to)7643-7657
Number of pages15
JournalApplied optics
Volume62
Issue number29
DOIs
StatePublished - Oct 10 2023

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'H2O and temperature measurements in propagating hydrogen/oxygen flames using a broadband swept-wavelength ECQCL'. Together they form a unique fingerprint.

Cite this