TY - GEN
T1 - High Directivity, Omnidirectional Horizontally Polarized Antenna Array for Wireless Power Transfer in Internet-of-Things Applications
AU - Lin, Wei
AU - Ziolkowski, Richard W.
N1 - Publisher Copyright: © 2020 EurAAP.
PY - 2020/3
Y1 - 2020/3
N2 - A high directivity, compact, omnidirectional horizontally polarized (OHP) antenna array is developed for wirelessly powering internet-of-things (IoT) devices. The antenna array is realized by seamlessly inserting several phase inverters inside an electrically long TE0.5,0 mode open waveguide. The phase inverter consists of a meandered slot and eight shorting vias. The meandered slot creates an interdigitated structure on the top surface of the waveguide; it introduces capacitance. The eight shorting vias are placed in an alternating pattern on the two sides of the slot; they produce inductance. The combination of the slot and vias forms a bandpass effect and inverts the electric fields in the waveguide. Consequently, a collinear and in-phase magnetic dipole array is realized. A compact eight-element OHP magnetic dipole array is designed, fabricated and measured. The measured results confirm the design concept and high directivity (10.4 dBi), omnidirectional HP radiation pattern has been achieved.
AB - A high directivity, compact, omnidirectional horizontally polarized (OHP) antenna array is developed for wirelessly powering internet-of-things (IoT) devices. The antenna array is realized by seamlessly inserting several phase inverters inside an electrically long TE0.5,0 mode open waveguide. The phase inverter consists of a meandered slot and eight shorting vias. The meandered slot creates an interdigitated structure on the top surface of the waveguide; it introduces capacitance. The eight shorting vias are placed in an alternating pattern on the two sides of the slot; they produce inductance. The combination of the slot and vias forms a bandpass effect and inverts the electric fields in the waveguide. Consequently, a collinear and in-phase magnetic dipole array is realized. A compact eight-element OHP magnetic dipole array is designed, fabricated and measured. The measured results confirm the design concept and high directivity (10.4 dBi), omnidirectional HP radiation pattern has been achieved.
UR - http://www.scopus.com/inward/record.url?scp=85088650677&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088650677&partnerID=8YFLogxK
U2 - 10.23919/EuCAP48036.2020.9135789
DO - 10.23919/EuCAP48036.2020.9135789
M3 - Conference contribution
T3 - 14th European Conference on Antennas and Propagation, EuCAP 2020
BT - 14th European Conference on Antennas and Propagation, EuCAP 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 14th European Conference on Antennas and Propagation, EuCAP 2020
Y2 - 15 March 2020 through 20 March 2020
ER -