Abstract
The Masculinizer (Masc) gene has been known to control sex development and dosage compensation in lepidopterans. However, it remains unclear whether its ortholog exists and plays the same roles in distantly related lepidopterans such as Helicoverpa armigera. To address this question, we cloned Masc from H. armigera (HaMasc), which contains all essential functional domains of BmMasc, albeit with less than 30% amino acid sequence identity with BmMasc. Genomic PCR and qPCR analyses showed that HaMasc is a Z chromosome‐linked gene since its genomic content in males (ZZ) was two times greater than that in females (ZW). RT‐PCR and RT‐qPCR analyses revealed that HaMasc expression was sex‐ and stage‐biased, with significantly more transcripts in males and eggs than in females and other stages. Transfection of a mixture of three siRNAs of HaMasc into a male embryonic cell line of H. armigera led to the appearance of female‐specific mRNA splicing isoforms of H. armigera doublesex (Hadsx), a downstream target gene of HaMasc in the H. armigera sex determination pathway. The knockdown of HaMasc, starting from the third instar larvae resulted in a shift of Hadsx splicing from male to female isoforms, smaller male pupa and testes, fewer but larger/longer spermatocytes and sperm bundles, delayed pupation and internal fusion of the testes and follicles. These data demonstrate that HaMasc functions as a masculinizing gene in the H. armigera sex‐determination cascade.
Original language | English (US) |
---|---|
Article number | 8650 |
Journal | International journal of molecular sciences |
Volume | 22 |
Issue number | 16 |
DOIs | |
State | Published - Aug 2 2021 |
Keywords
- Chromosome
- Development
- Doublesex
- Sex determination
- Sperm bundle
- Testis fusion
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry