Improved StyleGAN-v2 based Inversion for Out-of-Distribution Images

Rakshith Subramanyam, Vivek Narayanaswamy, Mark Naufel, Andreas Spanias, Jayaraman J. Thiagarajan

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

Inverting an image onto the latent space of pre-trained generators, e.g., StyleGAN-v2, has emerged as a popular strategy to leverage strong image priors for ill-posed restoration. Several studies have showed that this approach is effective at inverting images similar to the data used for training. However, with out-of-distribution (OOD) data that the generator has not been exposed to, existing inversion techniques produce sub-optimal results. In this paper, we propose SPHInX (StyleGAN with Projection Heads for Inverting X), an approach for accurately embedding OOD images onto the StyleGAN latent space. SPHInX optimizes a style projection head using a novel training strategy that imposes a vicinal regularization in the StyleGAN latent space. To further enhance OOD inversion, SPHInX can additionally optimize a content projection head and noise variables in every layer. Our empirical studies on a suite of OOD data show that, in addition to producing higher quality reconstructions over the state-of-the-art inversion techniques, SPHInX is effective for ill-posed restoration tasks while offering semantic editing capabilities.

Original languageEnglish (US)
Pages (from-to)20625-20639
Number of pages15
JournalProceedings of Machine Learning Research
Volume162
StatePublished - 2022
Event39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States
Duration: Jul 17 2022Jul 23 2022

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Improved StyleGAN-v2 based Inversion for Out-of-Distribution Images'. Together they form a unique fingerprint.

Cite this