TY - GEN
T1 - Improving traffic prediction with tweet semantics
AU - Shen, Wei
AU - Divakaruni, Phani
AU - Wynter, Laura
AU - Lawrence, Rick
PY - 2013
Y1 - 2013
N2 - Road traffic prediction is a critical component in modern smart transportation systems. It provides the basis for traffic management agencies to generate proactive traffic operation strategies for alleviating congestion. Existing work on near-term traffic prediction (forecasting horizons in the range of 5 minutes to 1 hour) relies on the past and current traffic conditions. However, once the forecasting horizon is beyond 1 hour, i.e., in longer-term traffic prediction, these techniques do not work well since additional factors other than the past and current traffic conditions start to play important roles. To address this problem, in this paper, for the first time, we examine whether it is possible to use the rich information in online social media to improve longer-term traffic prediction. To this end, we first analyze the correlation between traffic volume and tweet counts with various granularities. Then we propose an optimization framework to extract traffic indicators based on tweet semantics using a transformation matrix, and incorporate them into traffic prediction via linear regression. Experimental results using traffic and Twitter data originated from the San Francisco Bay area of California demonstrate the effectiveness of our proposed framework.
AB - Road traffic prediction is a critical component in modern smart transportation systems. It provides the basis for traffic management agencies to generate proactive traffic operation strategies for alleviating congestion. Existing work on near-term traffic prediction (forecasting horizons in the range of 5 minutes to 1 hour) relies on the past and current traffic conditions. However, once the forecasting horizon is beyond 1 hour, i.e., in longer-term traffic prediction, these techniques do not work well since additional factors other than the past and current traffic conditions start to play important roles. To address this problem, in this paper, for the first time, we examine whether it is possible to use the rich information in online social media to improve longer-term traffic prediction. To this end, we first analyze the correlation between traffic volume and tweet counts with various granularities. Then we propose an optimization framework to extract traffic indicators based on tweet semantics using a transformation matrix, and incorporate them into traffic prediction via linear regression. Experimental results using traffic and Twitter data originated from the San Francisco Bay area of California demonstrate the effectiveness of our proposed framework.
UR - http://www.scopus.com/inward/record.url?scp=84896061078&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896061078&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781577356332
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1387
EP - 1393
BT - IJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
T2 - 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Y2 - 3 August 2013 through 9 August 2013
ER -