TY - JOUR
T1 - Induction of multidrug resistance protein 3 in rat liver is associated with altered vectorial excretion of acetaminophen metabolites
AU - Slitt, A. L.
AU - Cherrington, N. J.
AU - Maher, J. M.
AU - Klaassen, Curtis D.
PY - 2003/9/1
Y1 - 2003/9/1
N2 - Treatment with the microsomal enzyme inducer trans-stilbene oxide (TSO) can decrease biliary excretion of acetaminophen-glucuronide (AA-GLUC) and increase efflux of AA-GLUC into blood. The hepatic canalicular multidrug resistance protein (Mrp) 2 and sinusoidal protein Mrp3 transport AA-GLUC conjugates into bile and blood, respectively. Thus, TSO-induced alterations in the vectorial excretion of AA-GLUC may occur via increased hepatic Mrp3 levels. The goal of this study was to determine whether TSO, diallyl sulfide (DAS), and oltipraz (OLT) treatments can up-regulate Mrp3 protein expression, and whether treatment with DAS and OLT can correspondingly increase hepatovascular efflux of AA metabolites. Rats were administered phenobarbital, TSO, DAS, OLT, or vehicle for 4 days. Interestingly, all of the chemicals increased the plasma concentration and urinary excretion of AA-GLUC and decreased its biliary excretion. In control animals, approximately 77% and 23% of AA-GLUC was excreted into bile or urine, respectively, whereas with inducer-pretreated animals, <32% of AA-GLUC was excreted into bile and >68% was excreted into urine. Correspondingly, all of the compounds increased hepatic Mrp3 mRNA levels by 13- to 37-fold and protein levels by 2- to 6-fold, respectively. In conclusion, these studies correlate increased Mrp3 protein levels in liver with increased hepatovascular excretion of AA-GLUC and suggest that induction of Mrp3 affects the route of drug excretion.
AB - Treatment with the microsomal enzyme inducer trans-stilbene oxide (TSO) can decrease biliary excretion of acetaminophen-glucuronide (AA-GLUC) and increase efflux of AA-GLUC into blood. The hepatic canalicular multidrug resistance protein (Mrp) 2 and sinusoidal protein Mrp3 transport AA-GLUC conjugates into bile and blood, respectively. Thus, TSO-induced alterations in the vectorial excretion of AA-GLUC may occur via increased hepatic Mrp3 levels. The goal of this study was to determine whether TSO, diallyl sulfide (DAS), and oltipraz (OLT) treatments can up-regulate Mrp3 protein expression, and whether treatment with DAS and OLT can correspondingly increase hepatovascular efflux of AA metabolites. Rats were administered phenobarbital, TSO, DAS, OLT, or vehicle for 4 days. Interestingly, all of the chemicals increased the plasma concentration and urinary excretion of AA-GLUC and decreased its biliary excretion. In control animals, approximately 77% and 23% of AA-GLUC was excreted into bile or urine, respectively, whereas with inducer-pretreated animals, <32% of AA-GLUC was excreted into bile and >68% was excreted into urine. Correspondingly, all of the compounds increased hepatic Mrp3 mRNA levels by 13- to 37-fold and protein levels by 2- to 6-fold, respectively. In conclusion, these studies correlate increased Mrp3 protein levels in liver with increased hepatovascular excretion of AA-GLUC and suggest that induction of Mrp3 affects the route of drug excretion.
UR - http://www.scopus.com/inward/record.url?scp=0042858530&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042858530&partnerID=8YFLogxK
U2 - 10.1124/dmd.31.9.1176
DO - 10.1124/dmd.31.9.1176
M3 - Article
C2 - 12920174
SN - 0090-9556
VL - 31
SP - 1176
EP - 1186
JO - Drug Metabolism and Disposition
JF - Drug Metabolism and Disposition
IS - 9
ER -