Abstract

Anomaly detection on attributed networks has attracted a surge of research attention due to its broad applications in various high-impact domains, such as security, finance, and healthcare. Nonetheless, most of the existing efforts do not naturally generalize to unseen nodes, leading to the fact that people have to retrain the detection model from scratch when dealing with newly observed data. In this study, we propose to tackle the problem of inductive anomaly detection on attributed networks with a novel unsupervised framework: AEGIS (adversarial graph differentiation networks). Specifically, we design a new graph neural layer to learn anomaly-aware node representations and further employ generative adversarial learning to detect anomalies among new data. Extensive experiments on various attributed networks demonstrate the efficacy of the proposed approach.

Original languageEnglish (US)
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1288-1294
Number of pages7
ISBN (Electronic)9780999241165
StatePublished - 2020
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: Jan 1 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/1/21 → …

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Inductive anomaly detection on attributed networks'. Together they form a unique fingerprint.

Cite this