TY - GEN
T1 - Information diffusion in overlaying social-physical networks
AU - Yaǧan, Osman
AU - Qian, Dajun
AU - Zhang, Junshan
AU - Cochran, Douglas
PY - 2012/11/12
Y1 - 2012/11/12
N2 - We study the diffusion of information in an overlaying social-physical network. Namely, we consider a physical information network where information spreads amongst people through conventional communication media (e.g., face-to-face communication, phone calls), and conjoint to this physical network, there are online social networks where information spreads via web sites such as Facebook, Twitter, FriendFeed, YouTube, etc. Capitalizing on the theory of inhomogeneous random graphs, we quantify the size and the critical threshold of information epidemics in this conjoint social-physical network by assuming that information diffuses according to the SIR epidemic model. One interesting finding is that even if there is no percolation in the individual networks, percolation (i.e., information epidemics) can take place in the conjoint social-physical network. We also show, both analytically and experimentally, that the fraction of individuals who receive an item of information (started from an arbitrary node) is significantly larger in the conjoint social-physical network case, as compared to the case where the networks are disjoint. These findings reveal that conjoining the physical network with online social networks can have a dramatic impact on the speed and scale of information diffusion.
AB - We study the diffusion of information in an overlaying social-physical network. Namely, we consider a physical information network where information spreads amongst people through conventional communication media (e.g., face-to-face communication, phone calls), and conjoint to this physical network, there are online social networks where information spreads via web sites such as Facebook, Twitter, FriendFeed, YouTube, etc. Capitalizing on the theory of inhomogeneous random graphs, we quantify the size and the critical threshold of information epidemics in this conjoint social-physical network by assuming that information diffuses according to the SIR epidemic model. One interesting finding is that even if there is no percolation in the individual networks, percolation (i.e., information epidemics) can take place in the conjoint social-physical network. We also show, both analytically and experimentally, that the fraction of individuals who receive an item of information (started from an arbitrary node) is significantly larger in the conjoint social-physical network case, as compared to the case where the networks are disjoint. These findings reveal that conjoining the physical network with online social networks can have a dramatic impact on the speed and scale of information diffusion.
KW - Coupled Networks
KW - Information Diffusion
KW - Random Graphs
UR - http://www.scopus.com/inward/record.url?scp=84868560359&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868560359&partnerID=8YFLogxK
U2 - 10.1109/CISS.2012.6310749
DO - 10.1109/CISS.2012.6310749
M3 - Conference contribution
SN - 9781467331401
T3 - 2012 46th Annual Conference on Information Sciences and Systems, CISS 2012
BT - 2012 46th Annual Conference on Information Sciences and Systems, CISS 2012
T2 - 2012 46th Annual Conference on Information Sciences and Systems, CISS 2012
Y2 - 21 March 2012 through 23 March 2012
ER -