TY - GEN
T1 - Intrinsic scene decomposition from RGB-D images
AU - Hachama, Mohammed
AU - Ghanem, Bernard
N1 - Publisher Copyright: © 2015 IEEE.
PY - 2015/2/17
Y1 - 2015/2/17
N2 - In this paper, we address the problem of computing an intrinsic decomposition of the colors of a surface into an albedo and a shading term. The surface is reconstructed from a single or multiple RGB-D images of a static scene obtained from different views. We thereby extend and improve existing works in the area of intrinsic image decomposition. In a variational framework, we formulate the problem as a minimization of an energy composed of two terms: a data term and a regularity term. The first term is related to the image formation process and expresses the relation between the albedo, the surface normals, and the incident illumination. We use an affine shading model, a combination of a Lambertian model, and an ambient lighting term. This model is relevant for Lambertian surfaces. When available, multiple views can be used to handle view-dependent non-Lambertian reflections. The second term contains an efficient combination of l2 and l1-regularizers on the illumination vector field and albedo respectively. Unlike most previous approaches, especially Retinex-like techniques, these terms do not depend on the image gradient or texture, thus reducing the mixing shading/reflectance artifacts and leading to better results. The obtained non-linear optimization problem is efficiently solved using a cyclic block coordinate descent algorithm. Our method outperforms a range of state-of-the-art algorithms on a popular benchmark dataset.
AB - In this paper, we address the problem of computing an intrinsic decomposition of the colors of a surface into an albedo and a shading term. The surface is reconstructed from a single or multiple RGB-D images of a static scene obtained from different views. We thereby extend and improve existing works in the area of intrinsic image decomposition. In a variational framework, we formulate the problem as a minimization of an energy composed of two terms: a data term and a regularity term. The first term is related to the image formation process and expresses the relation between the albedo, the surface normals, and the incident illumination. We use an affine shading model, a combination of a Lambertian model, and an ambient lighting term. This model is relevant for Lambertian surfaces. When available, multiple views can be used to handle view-dependent non-Lambertian reflections. The second term contains an efficient combination of l2 and l1-regularizers on the illumination vector field and albedo respectively. Unlike most previous approaches, especially Retinex-like techniques, these terms do not depend on the image gradient or texture, thus reducing the mixing shading/reflectance artifacts and leading to better results. The obtained non-linear optimization problem is efficiently solved using a cyclic block coordinate descent algorithm. Our method outperforms a range of state-of-the-art algorithms on a popular benchmark dataset.
UR - http://www.scopus.com/inward/record.url?scp=84973926593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84973926593&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2015.99
DO - 10.1109/ICCV.2015.99
M3 - Conference contribution
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 810
EP - 818
BT - 2015 International Conference on Computer Vision, ICCV 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 15th IEEE International Conference on Computer Vision, ICCV 2015
Y2 - 11 December 2015 through 18 December 2015
ER -