Investigating the role of L1 in automatic pronunciation evaluation of L2 speech

Ming Tu, Anna Grabek, Julie Liss, Visar Berisha

Research output: Contribution to journalConference articlepeer-review

26 Scopus citations


Automatic pronunciation evaluation plays an important role in pronunciation training and second language education. This field draws heavily on concepts from automatic speech recognition (ASR) to quantify how close the pronunciation of nonnative speech is to native-like pronunciation. However, it is known that the formation of accent is related to pronunciation patterns of both the target language (L2) and the speaker's first language (L1). In this paper, we propose to use two native speech acoustic models, one trained on L2 speech and the other trained on L1 speech. We develop two sets of measurements that can be extracted from two acoustic models given accented speech. A new utterance-level feature extraction scheme is used to convert these measurements into a fixed-dimension vector which is used as an input to a statistical model to predict the accentedness of a speaker. On a data set consisting of speakers from 4 different L1 backgrounds, we show that the proposed system yields improved correlation with human evaluators compared to systems only using the L2 acoustic model.

Original languageEnglish (US)
Pages (from-to)1636-1640
Number of pages5
JournalProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
StatePublished - 2018
Event19th Annual Conference of the International Speech Communication, INTERSPEECH 2018 - Hyderabad, India
Duration: Sep 2 2018Sep 6 2018


  • Accentedness
  • Automatic speech recognition
  • Pronunciation evaluation

ASJC Scopus subject areas

  • Language and Linguistics
  • Human-Computer Interaction
  • Signal Processing
  • Software
  • Modeling and Simulation


Dive into the research topics of 'Investigating the role of L1 in automatic pronunciation evaluation of L2 speech'. Together they form a unique fingerprint.

Cite this