LPD communication when the warden does not know when

Boulat A. Bash, Dennis Goeckel, Don Towsley

Research output: Chapter in Book/Report/Conference proceedingConference contribution

64 Scopus citations

Abstract

Unlike standard security methods (e.g. encryption), low probability of detection (LPD) communication does not merely protect the information contained in a transmission from unauthorized access, but prevents the detection of a transmission in the first place. In this work we study the impact of secretly pre-arranging the time of communication. We prove that if Alice has AWGN channels to Bob and the warden, and if she and Bob can choose a single n symbol period slot out of T(n) such slots, keeping the selection secret from the warden (and, thus, forcing him to monitor all T(n) slots), then Alice can reliably transmit O(min[√n log T(n),n]) bits to Bob while keeping the warden's detector ineffective. The result indicates that only an additional log T(n) secret bits need to be exchanged between Alice and Bpob prior to communication to produce a multiplicative gain of √log T(n) in the amount of transmitted covert information.

Original languageEnglish (US)
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages606-610
Number of pages5
ISBN (Print)9781479951864
DOIs
StatePublished - 2014
Externally publishedYes
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: Jun 29 2014Jul 4 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings

Other

Other2014 IEEE International Symposium on Information Theory, ISIT 2014
Country/TerritoryUnited States
CityHonolulu, HI
Period6/29/147/4/14

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'LPD communication when the warden does not know when'. Together they form a unique fingerprint.

Cite this