Machine-learning approaches for classifying haplogroup from Y chromosome STR data

Joseph Schlecht, Matthew E. Kaplan, Kobus Barnard, Tatiana Karafet, Michael F. Hammer, Nirav C. Merchant

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Genetic variation on the non-recombining portion of the Y chromosome contains information about the ancestry of male lineages. Because of their low rate of mutation, single nucleotide polymorphisms (SNPs) are the markers of choice for unambiguously classifying Y chromosomes into related sets of lineages known as haplogroups, which tend to show geographic structure in many parts of the world. However, performing the large number of SNP genotyping tests needed to properly infer haplogroup status is expensive and time consuming. A novel alternative for assigning a sampled Y chromosome to a haplogroup is presented here. We show that by applying modern machine-learning algorithms we can infer with high accuracy the proper Y chromosome haplogroup of a sample by scoring a relatively small number of Y-linked short tandem repeats (STRs). Learning is based on a diverse ground-truth data set comprising pairs of SNP test results (haplogroup) and corresponding STR scores. We apply several independent machine-learning methods in tandem to learn formal classification functions. The result is an integrated high-throughput analysis system that automatically classifies large numbers of samples into haplogroups in a cost-effective and accurate manner.

Original languageEnglish (US)
Article numbere1000093
JournalPLoS computational biology
Volume4
Issue number6
DOIs
StatePublished - Jun 2008

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Machine-learning approaches for classifying haplogroup from Y chromosome STR data'. Together they form a unique fingerprint.

Cite this