Mapping the Pressure-dependent Day-Night Temperature Contrast of a Strongly Irradiated Atmosphere with HST Spectroscopic Phase Curve

Ben W.P. Lew, Dániel Apai, Yifan Zhou, Mark Marley, L. C. Mayorga, Xianyu Tan, Vivien Parmentier, Sarah Casewell, Siyi Xu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Many brown dwarfs are on ultrashort-period and tidally locked orbits around white dwarf hosts. Because of these small orbital separations, the brown dwarfs are irradiated at levels similar to hot Jupiters. Yet, they are easier to observe than hot Jupiters because white dwarfs are fainter than main-sequence stars at near-infrared wavelengths. Irradiated brown dwarfs are, therefore, ideal hot Jupiter analogs for studying the atmospheric response under strong irradiation and fast rotation. We present the 1.1-1.67 μm spectroscopic phase curve of the irradiated brown dwarf (SDSS1411-B) in the SDSS J141126.20 + 200911.1 brown dwarf-white dwarf binary with the near-infrared G141 grism of the Hubble Space Telescope Wide Field Camera 3. SDSS1411-B is a 50M Jup brown dwarf with an irradiation temperature of 1300 K and has an orbital period of 2.02864 hr. Our best-fit model suggests a phase-curve amplitude of 1.4% and places an upper limit of 11 for the phase offset from the secondary eclipse. After fitting the white dwarf spectrum, we extract the phase-resolved brown dwarf emission spectra. We report a highly wavelength-dependent day-night spectral variation, with a water-band flux variation of about 360% 70% and a comparatively small J-band flux variation of 37% 2%. By combining the atmospheric modeling results and the day-night brightness temperature variations, we derive a pressure-dependent temperature contrast. We discuss the difference in the spectral features of SDSS1411-B and hot Jupiter WASP-43b, as well as the lower-than-predicted day-night temperature contrast of J4111-BD. Our study provides the high-precision observational constraints on the atmospheric structures of an irradiated brown dwarf at different orbital phases.

Original languageEnglish (US)
Article number8
JournalAstronomical Journal
Volume163
Issue number1
DOIs
StatePublished - Jan 1 2022

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Mapping the Pressure-dependent Day-Night Temperature Contrast of a Strongly Irradiated Atmosphere with HST Spectroscopic Phase Curve'. Together they form a unique fingerprint.

Cite this