Micro-fluidic assisted passive direct methanol fuel cells

Gladys Garza, Peiwen Li, Douglas Loy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A novel design of micro-fluidic structure has been proposed to facilitate passive methanol supply and ventilation of carbon dioxide in direct methanol fuel cells (DMFC). Experimental study was conducted for three in-house fabricated cells which have different membrane-electrode-assemblies (MEA) and cathode-side air-breathing current collectors. Low rate of passive methanol supply and control was accomplished through capillary-force-driven mass transfer in the in-plane of carbon paper wicks. The low methanol supply rate using this passive method only meets the need of fuel of the electrochemical reaction, and there is almost no surplus methanol that could cross over the membrane. The micro-fluidic structure on the anode plate also makes passive removal of the CO2 gas from the electrochemical reaction. The influence of the concentration of methanol and cell operation temperature was examined and compared in the study. The results reveal very promising performance in the passive DMFCs when a methanol concentration is above 8M.

Original languageEnglish (US)
Title of host publicationASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Pages563-570
Number of pages8
EditionPARTS A AND B
DOIs
StatePublished - 2012
EventASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012 - Houston, TX, United States
Duration: Nov 9 2012Nov 15 2012

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
NumberPARTS A AND B
Volume9

Other

OtherASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Country/TerritoryUnited States
CityHouston, TX
Period11/9/1211/15/12

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Micro-fluidic assisted passive direct methanol fuel cells'. Together they form a unique fingerprint.

Cite this